| Step |
Hyp |
Ref |
Expression |
| 1 |
|
od1.1 |
|- O = ( od ` G ) |
| 2 |
|
od1.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
3 2
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 5 |
|
1nn |
|- 1 e. NN |
| 6 |
5
|
a1i |
|- ( G e. Grp -> 1 e. NN ) |
| 7 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 8 |
3 7
|
mulg1 |
|- ( .0. e. ( Base ` G ) -> ( 1 ( .g ` G ) .0. ) = .0. ) |
| 9 |
4 8
|
syl |
|- ( G e. Grp -> ( 1 ( .g ` G ) .0. ) = .0. ) |
| 10 |
3 1 7 2
|
odlem2 |
|- ( ( .0. e. ( Base ` G ) /\ 1 e. NN /\ ( 1 ( .g ` G ) .0. ) = .0. ) -> ( O ` .0. ) e. ( 1 ... 1 ) ) |
| 11 |
4 6 9 10
|
syl3anc |
|- ( G e. Grp -> ( O ` .0. ) e. ( 1 ... 1 ) ) |
| 12 |
|
elfz1eq |
|- ( ( O ` .0. ) e. ( 1 ... 1 ) -> ( O ` .0. ) = 1 ) |
| 13 |
11 12
|
syl |
|- ( G e. Grp -> ( O ` .0. ) = 1 ) |