| Step |
Hyp |
Ref |
Expression |
| 1 |
|
od1.1 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 2 |
|
od1.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 4 |
3 2
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 5 |
|
1nn |
⊢ 1 ∈ ℕ |
| 6 |
5
|
a1i |
⊢ ( 𝐺 ∈ Grp → 1 ∈ ℕ ) |
| 7 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 8 |
3 7
|
mulg1 |
⊢ ( 0 ∈ ( Base ‘ 𝐺 ) → ( 1 ( .g ‘ 𝐺 ) 0 ) = 0 ) |
| 9 |
4 8
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 1 ( .g ‘ 𝐺 ) 0 ) = 0 ) |
| 10 |
3 1 7 2
|
odlem2 |
⊢ ( ( 0 ∈ ( Base ‘ 𝐺 ) ∧ 1 ∈ ℕ ∧ ( 1 ( .g ‘ 𝐺 ) 0 ) = 0 ) → ( 𝑂 ‘ 0 ) ∈ ( 1 ... 1 ) ) |
| 11 |
4 6 9 10
|
syl3anc |
⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ 0 ) ∈ ( 1 ... 1 ) ) |
| 12 |
|
elfz1eq |
⊢ ( ( 𝑂 ‘ 0 ) ∈ ( 1 ... 1 ) → ( 𝑂 ‘ 0 ) = 1 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 𝑂 ‘ 0 ) = 1 ) |