| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zofldiv2ALTV |  |-  ( K e. Odd -> ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( K e. Odd -> ( 2 x. ( |_ ` ( K / 2 ) ) ) = ( 2 x. ( ( K - 1 ) / 2 ) ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( K e. Odd -> ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) = ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 4 |  | oddz |  |-  ( K e. Odd -> K e. ZZ ) | 
						
							| 5 |  | peano2zm |  |-  ( K e. ZZ -> ( K - 1 ) e. ZZ ) | 
						
							| 6 | 5 | zcnd |  |-  ( K e. ZZ -> ( K - 1 ) e. CC ) | 
						
							| 7 | 4 6 | syl |  |-  ( K e. Odd -> ( K - 1 ) e. CC ) | 
						
							| 8 |  | 2cnd |  |-  ( K e. Odd -> 2 e. CC ) | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( K e. Odd -> 2 =/= 0 ) | 
						
							| 11 | 7 8 10 | divcan2d |  |-  ( K e. Odd -> ( 2 x. ( ( K - 1 ) / 2 ) ) = ( K - 1 ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( K e. Odd -> ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) = ( ( K - 1 ) + 1 ) ) | 
						
							| 13 | 4 | zcnd |  |-  ( K e. Odd -> K e. CC ) | 
						
							| 14 |  | npcan1 |  |-  ( K e. CC -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 15 | 13 14 | syl |  |-  ( K e. Odd -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 16 | 3 12 15 | 3eqtrrd |  |-  ( K e. Odd -> K = ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) ) |