Step |
Hyp |
Ref |
Expression |
1 |
|
zofldiv2ALTV |
|- ( K e. Odd -> ( |_ ` ( K / 2 ) ) = ( ( K - 1 ) / 2 ) ) |
2 |
1
|
oveq2d |
|- ( K e. Odd -> ( 2 x. ( |_ ` ( K / 2 ) ) ) = ( 2 x. ( ( K - 1 ) / 2 ) ) ) |
3 |
2
|
oveq1d |
|- ( K e. Odd -> ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) = ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) ) |
4 |
|
oddz |
|- ( K e. Odd -> K e. ZZ ) |
5 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
6 |
5
|
zcnd |
|- ( K e. ZZ -> ( K - 1 ) e. CC ) |
7 |
4 6
|
syl |
|- ( K e. Odd -> ( K - 1 ) e. CC ) |
8 |
|
2cnd |
|- ( K e. Odd -> 2 e. CC ) |
9 |
|
2ne0 |
|- 2 =/= 0 |
10 |
9
|
a1i |
|- ( K e. Odd -> 2 =/= 0 ) |
11 |
7 8 10
|
divcan2d |
|- ( K e. Odd -> ( 2 x. ( ( K - 1 ) / 2 ) ) = ( K - 1 ) ) |
12 |
11
|
oveq1d |
|- ( K e. Odd -> ( ( 2 x. ( ( K - 1 ) / 2 ) ) + 1 ) = ( ( K - 1 ) + 1 ) ) |
13 |
4
|
zcnd |
|- ( K e. Odd -> K e. CC ) |
14 |
|
npcan1 |
|- ( K e. CC -> ( ( K - 1 ) + 1 ) = K ) |
15 |
13 14
|
syl |
|- ( K e. Odd -> ( ( K - 1 ) + 1 ) = K ) |
16 |
3 12 15
|
3eqtrrd |
|- ( K e. Odd -> K = ( ( 2 x. ( |_ ` ( K / 2 ) ) ) + 1 ) ) |