| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zofldiv2ALTV | ⊢ ( 𝐾  ∈   Odd   →  ( ⌊ ‘ ( 𝐾  /  2 ) )  =  ( ( 𝐾  −  1 )  /  2 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝐾  ∈   Odd   →  ( 2  ·  ( ⌊ ‘ ( 𝐾  /  2 ) ) )  =  ( 2  ·  ( ( 𝐾  −  1 )  /  2 ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝐾  ∈   Odd   →  ( ( 2  ·  ( ⌊ ‘ ( 𝐾  /  2 ) ) )  +  1 )  =  ( ( 2  ·  ( ( 𝐾  −  1 )  /  2 ) )  +  1 ) ) | 
						
							| 4 |  | oddz | ⊢ ( 𝐾  ∈   Odd   →  𝐾  ∈  ℤ ) | 
						
							| 5 |  | peano2zm | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 6 | 5 | zcnd | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  −  1 )  ∈  ℂ ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝐾  ∈   Odd   →  ( 𝐾  −  1 )  ∈  ℂ ) | 
						
							| 8 |  | 2cnd | ⊢ ( 𝐾  ∈   Odd   →  2  ∈  ℂ ) | 
						
							| 9 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐾  ∈   Odd   →  2  ≠  0 ) | 
						
							| 11 | 7 8 10 | divcan2d | ⊢ ( 𝐾  ∈   Odd   →  ( 2  ·  ( ( 𝐾  −  1 )  /  2 ) )  =  ( 𝐾  −  1 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝐾  ∈   Odd   →  ( ( 2  ·  ( ( 𝐾  −  1 )  /  2 ) )  +  1 )  =  ( ( 𝐾  −  1 )  +  1 ) ) | 
						
							| 13 | 4 | zcnd | ⊢ ( 𝐾  ∈   Odd   →  𝐾  ∈  ℂ ) | 
						
							| 14 |  | npcan1 | ⊢ ( 𝐾  ∈  ℂ  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐾  ∈   Odd   →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 16 | 3 12 15 | 3eqtrrd | ⊢ ( 𝐾  ∈   Odd   →  𝐾  =  ( ( 2  ·  ( ⌊ ‘ ( 𝐾  /  2 ) ) )  +  1 ) ) |