| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( N e. Odd -> N e. ZZ ) | 
						
							| 2 | 1 | zcnd |  |-  ( N e. Odd -> N e. CC ) | 
						
							| 3 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 4 | 3 | eqcomd |  |-  ( N e. CC -> N = ( ( N - 1 ) + 1 ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( N e. CC -> ( N / 2 ) = ( ( ( N - 1 ) + 1 ) / 2 ) ) | 
						
							| 6 |  | peano2cnm |  |-  ( N e. CC -> ( N - 1 ) e. CC ) | 
						
							| 7 |  | 1cnd |  |-  ( N e. CC -> 1 e. CC ) | 
						
							| 8 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 9 | 8 | a1i |  |-  ( N e. CC -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 10 |  | divdir |  |-  ( ( ( N - 1 ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / 2 ) = ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 11 | 6 7 9 10 | syl3anc |  |-  ( N e. CC -> ( ( ( N - 1 ) + 1 ) / 2 ) = ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 12 | 5 11 | eqtrd |  |-  ( N e. CC -> ( N / 2 ) = ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 13 | 2 12 | syl |  |-  ( N e. Odd -> ( N / 2 ) = ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( N e. Odd -> ( |_ ` ( N / 2 ) ) = ( |_ ` ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) ) | 
						
							| 15 |  | halfge0 |  |-  0 <_ ( 1 / 2 ) | 
						
							| 16 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 17 | 15 16 | pm3.2i |  |-  ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) | 
						
							| 18 |  | oddm1div2z |  |-  ( N e. Odd -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 19 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 20 |  | flbi2 |  |-  ( ( ( ( N - 1 ) / 2 ) e. ZZ /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) = ( ( N - 1 ) / 2 ) <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) | 
						
							| 21 | 18 19 20 | sylancl |  |-  ( N e. Odd -> ( ( |_ ` ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) = ( ( N - 1 ) / 2 ) <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) | 
						
							| 22 | 17 21 | mpbiri |  |-  ( N e. Odd -> ( |_ ` ( ( ( N - 1 ) / 2 ) + ( 1 / 2 ) ) ) = ( ( N - 1 ) / 2 ) ) | 
						
							| 23 | 14 22 | eqtrd |  |-  ( N e. Odd -> ( |_ ` ( N / 2 ) ) = ( ( N - 1 ) / 2 ) ) |