Description: The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1eveni | |- ( Z e. Odd -> ( Z - 1 ) e. Even ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oddz | |- ( Z e. Odd -> Z e. ZZ ) | |
| 2 | peano2zm | |- ( Z e. ZZ -> ( Z - 1 ) e. ZZ ) | |
| 3 | 1 2 | syl | |- ( Z e. Odd -> ( Z - 1 ) e. ZZ ) | 
| 4 | oddm1div2z | |- ( Z e. Odd -> ( ( Z - 1 ) / 2 ) e. ZZ ) | |
| 5 | iseven | |- ( ( Z - 1 ) e. Even <-> ( ( Z - 1 ) e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) ) | |
| 6 | 3 4 5 | sylanbrc | |- ( Z e. Odd -> ( Z - 1 ) e. Even ) |