Description: The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1eveni | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 − 1 ) ∈ Even ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oddz | ⊢ ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ ) | |
| 2 | peano2zm | ⊢ ( 𝑍 ∈ ℤ → ( 𝑍 − 1 ) ∈ ℤ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 − 1 ) ∈ ℤ ) | 
| 4 | oddm1div2z | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) | |
| 5 | iseven | ⊢ ( ( 𝑍 − 1 ) ∈ Even ↔ ( ( 𝑍 − 1 ) ∈ ℤ ∧ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) ) | |
| 6 | 3 4 5 | sylanbrc | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 − 1 ) ∈ Even ) |