| Step |
Hyp |
Ref |
Expression |
| 1 |
|
offval2f.0 |
|- F/ x ph |
| 2 |
|
offval2f.a |
|- F/_ x A |
| 3 |
|
offval2f.1 |
|- ( ph -> A e. V ) |
| 4 |
|
offval2f.2 |
|- ( ( ph /\ x e. A ) -> B e. W ) |
| 5 |
|
offval2f.3 |
|- ( ( ph /\ x e. A ) -> C e. X ) |
| 6 |
|
offval2f.4 |
|- ( ph -> F = ( x e. A |-> B ) ) |
| 7 |
|
offval2f.5 |
|- ( ph -> G = ( x e. A |-> C ) ) |
| 8 |
4
|
ex |
|- ( ph -> ( x e. A -> B e. W ) ) |
| 9 |
1 8
|
ralrimi |
|- ( ph -> A. x e. A B e. W ) |
| 10 |
2
|
fnmptf |
|- ( A. x e. A B e. W -> ( x e. A |-> B ) Fn A ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( x e. A |-> B ) Fn A ) |
| 12 |
6
|
fneq1d |
|- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
| 13 |
11 12
|
mpbird |
|- ( ph -> F Fn A ) |
| 14 |
5
|
ex |
|- ( ph -> ( x e. A -> C e. X ) ) |
| 15 |
1 14
|
ralrimi |
|- ( ph -> A. x e. A C e. X ) |
| 16 |
2
|
fnmptf |
|- ( A. x e. A C e. X -> ( x e. A |-> C ) Fn A ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( x e. A |-> C ) Fn A ) |
| 18 |
7
|
fneq1d |
|- ( ph -> ( G Fn A <-> ( x e. A |-> C ) Fn A ) ) |
| 19 |
17 18
|
mpbird |
|- ( ph -> G Fn A ) |
| 20 |
|
inidm |
|- ( A i^i A ) = A |
| 21 |
6
|
adantr |
|- ( ( ph /\ y e. A ) -> F = ( x e. A |-> B ) ) |
| 22 |
21
|
fveq1d |
|- ( ( ph /\ y e. A ) -> ( F ` y ) = ( ( x e. A |-> B ) ` y ) ) |
| 23 |
7
|
adantr |
|- ( ( ph /\ y e. A ) -> G = ( x e. A |-> C ) ) |
| 24 |
23
|
fveq1d |
|- ( ( ph /\ y e. A ) -> ( G ` y ) = ( ( x e. A |-> C ) ` y ) ) |
| 25 |
13 19 3 3 20 22 24
|
offval |
|- ( ph -> ( F oF R G ) = ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) ) |
| 26 |
|
nfcv |
|- F/_ y A |
| 27 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> B ) ` y ) |
| 28 |
|
nfcv |
|- F/_ x R |
| 29 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> C ) ` y ) |
| 30 |
27 28 29
|
nfov |
|- F/_ x ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) |
| 31 |
|
nfcv |
|- F/_ y ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) |
| 32 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
| 33 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> C ) ` y ) = ( ( x e. A |-> C ) ` x ) ) |
| 34 |
32 33
|
oveq12d |
|- ( y = x -> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) = ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 35 |
26 2 30 31 34
|
cbvmptf |
|- ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 36 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 37 |
2
|
fvmpt2f |
|- ( ( x e. A /\ B e. W ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 38 |
36 4 37
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 39 |
2
|
fvmpt2f |
|- ( ( x e. A /\ C e. X ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 40 |
36 5 39
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 41 |
38 40
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) = ( B R C ) ) |
| 42 |
1 41
|
mpteq2da |
|- ( ph -> ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 43 |
35 42
|
eqtrid |
|- ( ph -> ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 44 |
25 43
|
eqtrd |
|- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |