Metamath Proof Explorer


Theorem oneqmin

Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)

Ref Expression
Assertion oneqmin
|- ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B <-> ( A e. B /\ A. x e. A -. x e. B ) ) )

Proof

Step Hyp Ref Expression
1 onint
 |-  ( ( B C_ On /\ B =/= (/) ) -> |^| B e. B )
2 eleq1
 |-  ( A = |^| B -> ( A e. B <-> |^| B e. B ) )
3 1 2 syl5ibrcom
 |-  ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B -> A e. B ) )
4 eleq2
 |-  ( A = |^| B -> ( x e. A <-> x e. |^| B ) )
5 4 biimpd
 |-  ( A = |^| B -> ( x e. A -> x e. |^| B ) )
6 onnmin
 |-  ( ( B C_ On /\ x e. B ) -> -. x e. |^| B )
7 6 ex
 |-  ( B C_ On -> ( x e. B -> -. x e. |^| B ) )
8 7 con2d
 |-  ( B C_ On -> ( x e. |^| B -> -. x e. B ) )
9 5 8 syl9r
 |-  ( B C_ On -> ( A = |^| B -> ( x e. A -> -. x e. B ) ) )
10 9 ralrimdv
 |-  ( B C_ On -> ( A = |^| B -> A. x e. A -. x e. B ) )
11 10 adantr
 |-  ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B -> A. x e. A -. x e. B ) )
12 3 11 jcad
 |-  ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B -> ( A e. B /\ A. x e. A -. x e. B ) ) )
13 oneqmini
 |-  ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A = |^| B ) )
14 13 adantr
 |-  ( ( B C_ On /\ B =/= (/) ) -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A = |^| B ) )
15 12 14 impbid
 |-  ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B <-> ( A e. B /\ A. x e. A -. x e. B ) ) )