Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | onintopssconn | |- ( On i^i Top ) C_ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |- ( x e. ( On i^i Top ) <-> ( x e. On /\ x e. Top ) ) |
|
2 | eloni | |- ( x e. On -> Ord x ) |
|
3 | ordtopconn | |- ( Ord x -> ( x e. Top <-> x e. Conn ) ) |
|
4 | 2 3 | syl | |- ( x e. On -> ( x e. Top <-> x e. Conn ) ) |
5 | 4 | biimpa | |- ( ( x e. On /\ x e. Top ) -> x e. Conn ) |
6 | 1 5 | sylbi | |- ( x e. ( On i^i Top ) -> x e. Conn ) |
7 | 6 | ssriv | |- ( On i^i Top ) C_ Conn |