Metamath Proof Explorer


Theorem onintopssconn

Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Assertion onintopssconn ( On ∩ Top ) ⊆ Conn

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( On ∩ Top ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Top ) )
2 eloni ( 𝑥 ∈ On → Ord 𝑥 )
3 ordtopconn ( Ord 𝑥 → ( 𝑥 ∈ Top ↔ 𝑥 ∈ Conn ) )
4 2 3 syl ( 𝑥 ∈ On → ( 𝑥 ∈ Top ↔ 𝑥 ∈ Conn ) )
5 4 biimpa ( ( 𝑥 ∈ On ∧ 𝑥 ∈ Top ) → 𝑥 ∈ Conn )
6 1 5 sylbi ( 𝑥 ∈ ( On ∩ Top ) → 𝑥 ∈ Conn )
7 6 ssriv ( On ∩ Top ) ⊆ Conn