Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onintopssconn | ⊢ ( On ∩ Top ) ⊆ Conn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( On ∩ Top ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Top ) ) | |
| 2 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 3 | ordtopconn | ⊢ ( Ord 𝑥 → ( 𝑥 ∈ Top ↔ 𝑥 ∈ Conn ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ Top ↔ 𝑥 ∈ Conn ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ Top ) → 𝑥 ∈ Conn ) |
| 6 | 1 5 | sylbi | ⊢ ( 𝑥 ∈ ( On ∩ Top ) → 𝑥 ∈ Conn ) |
| 7 | 6 | ssriv | ⊢ ( On ∩ Top ) ⊆ Conn |