Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | onintopssconn | ⊢ ( On ∩ Top ) ⊆ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | ⊢ ( 𝑥 ∈ ( On ∩ Top ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ Top ) ) | |
2 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
3 | ordtopconn | ⊢ ( Ord 𝑥 → ( 𝑥 ∈ Top ↔ 𝑥 ∈ Conn ) ) | |
4 | 2 3 | syl | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ Top ↔ 𝑥 ∈ Conn ) ) |
5 | 4 | biimpa | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ∈ Top ) → 𝑥 ∈ Conn ) |
6 | 1 5 | sylbi | ⊢ ( 𝑥 ∈ ( On ∩ Top ) → 𝑥 ∈ Conn ) |
7 | 6 | ssriv | ⊢ ( On ∩ Top ) ⊆ Conn |