Metamath Proof Explorer


Theorem onintopssconn

Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Assertion onintopssconn On Top Conn

Proof

Step Hyp Ref Expression
1 elin x On Top x On x Top
2 eloni x On Ord x
3 ordtopconn Ord x x Top x Conn
4 2 3 syl x On x Top x Conn
5 4 biimpa x On x Top x Conn
6 1 5 sylbi x On Top x Conn
7 6 ssriv On Top Conn