Metamath Proof Explorer


Theorem ordtopconn

Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtopconn Ord J J Top J Conn

Proof

Step Hyp Ref Expression
1 ordtop Ord J J Top J J
2 onsucconn J On suc J Conn
3 2 ordtoplem Ord J J J J Conn
4 1 3 sylbid Ord J J Top J Conn
5 conntop J Conn J Top
6 4 5 impbid1 Ord J J Top J Conn