Metamath Proof Explorer


Theorem ordtopconn

Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtopconn ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ∈ Conn ) )

Proof

Step Hyp Ref Expression
1 ordtop ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 𝐽 ) )
2 onsucconn ( 𝐽 ∈ On → suc 𝐽 ∈ Conn )
3 2 ordtoplem ( Ord 𝐽 → ( 𝐽 𝐽𝐽 ∈ Conn ) )
4 1 3 sylbid ( Ord 𝐽 → ( 𝐽 ∈ Top → 𝐽 ∈ Conn ) )
5 conntop ( 𝐽 ∈ Conn → 𝐽 ∈ Top )
6 4 5 impbid1 ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ∈ Conn ) )