Metamath Proof Explorer


Theorem onsucconn

Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Assertion onsucconn ( 𝐴 ∈ On → suc 𝐴 ∈ Conn )

Proof

Step Hyp Ref Expression
1 suceq ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → suc 𝐴 = suc if ( 𝐴 ∈ On , 𝐴 , ∅ ) )
2 1 eleq1d ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( suc 𝐴 ∈ Conn ↔ suc if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ Conn ) )
3 0elon ∅ ∈ On
4 3 elimel if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On
5 4 onsucconni suc if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ Conn
6 2 5 dedth ( 𝐴 ∈ On → suc 𝐴 ∈ Conn )