Metamath Proof Explorer


Theorem onsucconni

Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Hypothesis onsucconni.1 𝐴 ∈ On
Assertion onsucconni suc 𝐴 ∈ Conn

Proof

Step Hyp Ref Expression
1 onsucconni.1 𝐴 ∈ On
2 onsuctop ( 𝐴 ∈ On → suc 𝐴 ∈ Top )
3 1 2 ax-mp suc 𝐴 ∈ Top
4 elin ( 𝑥 ∈ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) ↔ ( 𝑥 ∈ suc 𝐴𝑥 ∈ ( Clsd ‘ suc 𝐴 ) ) )
5 elsuci ( 𝑥 ∈ suc 𝐴 → ( 𝑥𝐴𝑥 = 𝐴 ) )
6 1 onunisuci suc 𝐴 = 𝐴
7 6 eqcomi 𝐴 = suc 𝐴
8 7 cldopn ( 𝑥 ∈ ( Clsd ‘ suc 𝐴 ) → ( 𝐴𝑥 ) ∈ suc 𝐴 )
9 1 onsuci suc 𝐴 ∈ On
10 9 oneli ( ( 𝐴𝑥 ) ∈ suc 𝐴 → ( 𝐴𝑥 ) ∈ On )
11 elndif ( ∅ ∈ 𝑥 → ¬ ∅ ∈ ( 𝐴𝑥 ) )
12 on0eln0 ( ( 𝐴𝑥 ) ∈ On → ( ∅ ∈ ( 𝐴𝑥 ) ↔ ( 𝐴𝑥 ) ≠ ∅ ) )
13 12 biimprd ( ( 𝐴𝑥 ) ∈ On → ( ( 𝐴𝑥 ) ≠ ∅ → ∅ ∈ ( 𝐴𝑥 ) ) )
14 13 necon1bd ( ( 𝐴𝑥 ) ∈ On → ( ¬ ∅ ∈ ( 𝐴𝑥 ) → ( 𝐴𝑥 ) = ∅ ) )
15 ssdif0 ( 𝐴𝑥 ↔ ( 𝐴𝑥 ) = ∅ )
16 1 onssneli ( 𝐴𝑥 → ¬ 𝑥𝐴 )
17 15 16 sylbir ( ( 𝐴𝑥 ) = ∅ → ¬ 𝑥𝐴 )
18 11 14 17 syl56 ( ( 𝐴𝑥 ) ∈ On → ( ∅ ∈ 𝑥 → ¬ 𝑥𝐴 ) )
19 18 con2d ( ( 𝐴𝑥 ) ∈ On → ( 𝑥𝐴 → ¬ ∅ ∈ 𝑥 ) )
20 1 oneli ( 𝑥𝐴𝑥 ∈ On )
21 on0eln0 ( 𝑥 ∈ On → ( ∅ ∈ 𝑥𝑥 ≠ ∅ ) )
22 21 biimprd ( 𝑥 ∈ On → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) )
23 20 22 syl ( 𝑥𝐴 → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) )
24 23 necon1bd ( 𝑥𝐴 → ( ¬ ∅ ∈ 𝑥𝑥 = ∅ ) )
25 19 24 sylcom ( ( 𝐴𝑥 ) ∈ On → ( 𝑥𝐴𝑥 = ∅ ) )
26 10 25 syl ( ( 𝐴𝑥 ) ∈ suc 𝐴 → ( 𝑥𝐴𝑥 = ∅ ) )
27 26 orim1d ( ( 𝐴𝑥 ) ∈ suc 𝐴 → ( ( 𝑥𝐴𝑥 = 𝐴 ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) )
28 27 impcom ( ( ( 𝑥𝐴𝑥 = 𝐴 ) ∧ ( 𝐴𝑥 ) ∈ suc 𝐴 ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) )
29 vex 𝑥 ∈ V
30 29 elpr ( 𝑥 ∈ { ∅ , 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) )
31 28 30 sylibr ( ( ( 𝑥𝐴𝑥 = 𝐴 ) ∧ ( 𝐴𝑥 ) ∈ suc 𝐴 ) → 𝑥 ∈ { ∅ , 𝐴 } )
32 5 8 31 syl2an ( ( 𝑥 ∈ suc 𝐴𝑥 ∈ ( Clsd ‘ suc 𝐴 ) ) → 𝑥 ∈ { ∅ , 𝐴 } )
33 4 32 sylbi ( 𝑥 ∈ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) → 𝑥 ∈ { ∅ , 𝐴 } )
34 33 ssriv ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) ⊆ { ∅ , 𝐴 }
35 7 isconn2 ( suc 𝐴 ∈ Conn ↔ ( suc 𝐴 ∈ Top ∧ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) ⊆ { ∅ , 𝐴 } ) )
36 3 34 35 mpbir2an suc 𝐴 ∈ Conn