Step |
Hyp |
Ref |
Expression |
1 |
|
onsucconni.1 |
⊢ 𝐴 ∈ On |
2 |
|
onsuctop |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ Top ) |
3 |
1 2
|
ax-mp |
⊢ suc 𝐴 ∈ Top |
4 |
|
elin |
⊢ ( 𝑥 ∈ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) ↔ ( 𝑥 ∈ suc 𝐴 ∧ 𝑥 ∈ ( Clsd ‘ suc 𝐴 ) ) ) |
5 |
|
elsuci |
⊢ ( 𝑥 ∈ suc 𝐴 → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴 ) ) |
6 |
1
|
onunisuci |
⊢ ∪ suc 𝐴 = 𝐴 |
7 |
6
|
eqcomi |
⊢ 𝐴 = ∪ suc 𝐴 |
8 |
7
|
cldopn |
⊢ ( 𝑥 ∈ ( Clsd ‘ suc 𝐴 ) → ( 𝐴 ∖ 𝑥 ) ∈ suc 𝐴 ) |
9 |
1
|
onsuci |
⊢ suc 𝐴 ∈ On |
10 |
9
|
oneli |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ suc 𝐴 → ( 𝐴 ∖ 𝑥 ) ∈ On ) |
11 |
|
elndif |
⊢ ( ∅ ∈ 𝑥 → ¬ ∅ ∈ ( 𝐴 ∖ 𝑥 ) ) |
12 |
|
on0eln0 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ On → ( ∅ ∈ ( 𝐴 ∖ 𝑥 ) ↔ ( 𝐴 ∖ 𝑥 ) ≠ ∅ ) ) |
13 |
12
|
biimprd |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ On → ( ( 𝐴 ∖ 𝑥 ) ≠ ∅ → ∅ ∈ ( 𝐴 ∖ 𝑥 ) ) ) |
14 |
13
|
necon1bd |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ On → ( ¬ ∅ ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝐴 ∖ 𝑥 ) = ∅ ) ) |
15 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ 𝑥 ↔ ( 𝐴 ∖ 𝑥 ) = ∅ ) |
16 |
1
|
onssneli |
⊢ ( 𝐴 ⊆ 𝑥 → ¬ 𝑥 ∈ 𝐴 ) |
17 |
15 16
|
sylbir |
⊢ ( ( 𝐴 ∖ 𝑥 ) = ∅ → ¬ 𝑥 ∈ 𝐴 ) |
18 |
11 14 17
|
syl56 |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ On → ( ∅ ∈ 𝑥 → ¬ 𝑥 ∈ 𝐴 ) ) |
19 |
18
|
con2d |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ On → ( 𝑥 ∈ 𝐴 → ¬ ∅ ∈ 𝑥 ) ) |
20 |
1
|
oneli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) |
21 |
|
on0eln0 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ 𝑥 ≠ ∅ ) ) |
22 |
21
|
biimprd |
⊢ ( 𝑥 ∈ On → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) ) |
23 |
20 22
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ ∅ → ∅ ∈ 𝑥 ) ) |
24 |
23
|
necon1bd |
⊢ ( 𝑥 ∈ 𝐴 → ( ¬ ∅ ∈ 𝑥 → 𝑥 = ∅ ) ) |
25 |
19 24
|
sylcom |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ On → ( 𝑥 ∈ 𝐴 → 𝑥 = ∅ ) ) |
26 |
10 25
|
syl |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ suc 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 = ∅ ) ) |
27 |
26
|
orim1d |
⊢ ( ( 𝐴 ∖ 𝑥 ) ∈ suc 𝐴 → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴 ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ) |
28 |
27
|
impcom |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴 ) ∧ ( 𝐴 ∖ 𝑥 ) ∈ suc 𝐴 ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) |
29 |
|
vex |
⊢ 𝑥 ∈ V |
30 |
29
|
elpr |
⊢ ( 𝑥 ∈ { ∅ , 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) |
31 |
28 30
|
sylibr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴 ) ∧ ( 𝐴 ∖ 𝑥 ) ∈ suc 𝐴 ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
32 |
5 8 31
|
syl2an |
⊢ ( ( 𝑥 ∈ suc 𝐴 ∧ 𝑥 ∈ ( Clsd ‘ suc 𝐴 ) ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
33 |
4 32
|
sylbi |
⊢ ( 𝑥 ∈ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) → 𝑥 ∈ { ∅ , 𝐴 } ) |
34 |
33
|
ssriv |
⊢ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) ⊆ { ∅ , 𝐴 } |
35 |
7
|
isconn2 |
⊢ ( suc 𝐴 ∈ Conn ↔ ( suc 𝐴 ∈ Top ∧ ( suc 𝐴 ∩ ( Clsd ‘ suc 𝐴 ) ) ⊆ { ∅ , 𝐴 } ) ) |
36 |
3 34 35
|
mpbir2an |
⊢ suc 𝐴 ∈ Conn |