| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onsucconni.1 |
|- A e. On |
| 2 |
|
onsuctop |
|- ( A e. On -> suc A e. Top ) |
| 3 |
1 2
|
ax-mp |
|- suc A e. Top |
| 4 |
|
elin |
|- ( x e. ( suc A i^i ( Clsd ` suc A ) ) <-> ( x e. suc A /\ x e. ( Clsd ` suc A ) ) ) |
| 5 |
|
elsuci |
|- ( x e. suc A -> ( x e. A \/ x = A ) ) |
| 6 |
1
|
onunisuci |
|- U. suc A = A |
| 7 |
6
|
eqcomi |
|- A = U. suc A |
| 8 |
7
|
cldopn |
|- ( x e. ( Clsd ` suc A ) -> ( A \ x ) e. suc A ) |
| 9 |
1
|
onsuci |
|- suc A e. On |
| 10 |
9
|
oneli |
|- ( ( A \ x ) e. suc A -> ( A \ x ) e. On ) |
| 11 |
|
elndif |
|- ( (/) e. x -> -. (/) e. ( A \ x ) ) |
| 12 |
|
on0eln0 |
|- ( ( A \ x ) e. On -> ( (/) e. ( A \ x ) <-> ( A \ x ) =/= (/) ) ) |
| 13 |
12
|
biimprd |
|- ( ( A \ x ) e. On -> ( ( A \ x ) =/= (/) -> (/) e. ( A \ x ) ) ) |
| 14 |
13
|
necon1bd |
|- ( ( A \ x ) e. On -> ( -. (/) e. ( A \ x ) -> ( A \ x ) = (/) ) ) |
| 15 |
|
ssdif0 |
|- ( A C_ x <-> ( A \ x ) = (/) ) |
| 16 |
1
|
onssneli |
|- ( A C_ x -> -. x e. A ) |
| 17 |
15 16
|
sylbir |
|- ( ( A \ x ) = (/) -> -. x e. A ) |
| 18 |
11 14 17
|
syl56 |
|- ( ( A \ x ) e. On -> ( (/) e. x -> -. x e. A ) ) |
| 19 |
18
|
con2d |
|- ( ( A \ x ) e. On -> ( x e. A -> -. (/) e. x ) ) |
| 20 |
1
|
oneli |
|- ( x e. A -> x e. On ) |
| 21 |
|
on0eln0 |
|- ( x e. On -> ( (/) e. x <-> x =/= (/) ) ) |
| 22 |
21
|
biimprd |
|- ( x e. On -> ( x =/= (/) -> (/) e. x ) ) |
| 23 |
20 22
|
syl |
|- ( x e. A -> ( x =/= (/) -> (/) e. x ) ) |
| 24 |
23
|
necon1bd |
|- ( x e. A -> ( -. (/) e. x -> x = (/) ) ) |
| 25 |
19 24
|
sylcom |
|- ( ( A \ x ) e. On -> ( x e. A -> x = (/) ) ) |
| 26 |
10 25
|
syl |
|- ( ( A \ x ) e. suc A -> ( x e. A -> x = (/) ) ) |
| 27 |
26
|
orim1d |
|- ( ( A \ x ) e. suc A -> ( ( x e. A \/ x = A ) -> ( x = (/) \/ x = A ) ) ) |
| 28 |
27
|
impcom |
|- ( ( ( x e. A \/ x = A ) /\ ( A \ x ) e. suc A ) -> ( x = (/) \/ x = A ) ) |
| 29 |
|
vex |
|- x e. _V |
| 30 |
29
|
elpr |
|- ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) |
| 31 |
28 30
|
sylibr |
|- ( ( ( x e. A \/ x = A ) /\ ( A \ x ) e. suc A ) -> x e. { (/) , A } ) |
| 32 |
5 8 31
|
syl2an |
|- ( ( x e. suc A /\ x e. ( Clsd ` suc A ) ) -> x e. { (/) , A } ) |
| 33 |
4 32
|
sylbi |
|- ( x e. ( suc A i^i ( Clsd ` suc A ) ) -> x e. { (/) , A } ) |
| 34 |
33
|
ssriv |
|- ( suc A i^i ( Clsd ` suc A ) ) C_ { (/) , A } |
| 35 |
7
|
isconn2 |
|- ( suc A e. Conn <-> ( suc A e. Top /\ ( suc A i^i ( Clsd ` suc A ) ) C_ { (/) , A } ) ) |
| 36 |
3 34 35
|
mpbir2an |
|- suc A e. Conn |