Metamath Proof Explorer


Theorem onsucconni

Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Hypothesis onsucconni.1
|- A e. On
Assertion onsucconni
|- suc A e. Conn

Proof

Step Hyp Ref Expression
1 onsucconni.1
 |-  A e. On
2 onsuctop
 |-  ( A e. On -> suc A e. Top )
3 1 2 ax-mp
 |-  suc A e. Top
4 elin
 |-  ( x e. ( suc A i^i ( Clsd ` suc A ) ) <-> ( x e. suc A /\ x e. ( Clsd ` suc A ) ) )
5 elsuci
 |-  ( x e. suc A -> ( x e. A \/ x = A ) )
6 1 onunisuci
 |-  U. suc A = A
7 6 eqcomi
 |-  A = U. suc A
8 7 cldopn
 |-  ( x e. ( Clsd ` suc A ) -> ( A \ x ) e. suc A )
9 1 onsuci
 |-  suc A e. On
10 9 oneli
 |-  ( ( A \ x ) e. suc A -> ( A \ x ) e. On )
11 elndif
 |-  ( (/) e. x -> -. (/) e. ( A \ x ) )
12 on0eln0
 |-  ( ( A \ x ) e. On -> ( (/) e. ( A \ x ) <-> ( A \ x ) =/= (/) ) )
13 12 biimprd
 |-  ( ( A \ x ) e. On -> ( ( A \ x ) =/= (/) -> (/) e. ( A \ x ) ) )
14 13 necon1bd
 |-  ( ( A \ x ) e. On -> ( -. (/) e. ( A \ x ) -> ( A \ x ) = (/) ) )
15 ssdif0
 |-  ( A C_ x <-> ( A \ x ) = (/) )
16 1 onssneli
 |-  ( A C_ x -> -. x e. A )
17 15 16 sylbir
 |-  ( ( A \ x ) = (/) -> -. x e. A )
18 11 14 17 syl56
 |-  ( ( A \ x ) e. On -> ( (/) e. x -> -. x e. A ) )
19 18 con2d
 |-  ( ( A \ x ) e. On -> ( x e. A -> -. (/) e. x ) )
20 1 oneli
 |-  ( x e. A -> x e. On )
21 on0eln0
 |-  ( x e. On -> ( (/) e. x <-> x =/= (/) ) )
22 21 biimprd
 |-  ( x e. On -> ( x =/= (/) -> (/) e. x ) )
23 20 22 syl
 |-  ( x e. A -> ( x =/= (/) -> (/) e. x ) )
24 23 necon1bd
 |-  ( x e. A -> ( -. (/) e. x -> x = (/) ) )
25 19 24 sylcom
 |-  ( ( A \ x ) e. On -> ( x e. A -> x = (/) ) )
26 10 25 syl
 |-  ( ( A \ x ) e. suc A -> ( x e. A -> x = (/) ) )
27 26 orim1d
 |-  ( ( A \ x ) e. suc A -> ( ( x e. A \/ x = A ) -> ( x = (/) \/ x = A ) ) )
28 27 impcom
 |-  ( ( ( x e. A \/ x = A ) /\ ( A \ x ) e. suc A ) -> ( x = (/) \/ x = A ) )
29 vex
 |-  x e. _V
30 29 elpr
 |-  ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) )
31 28 30 sylibr
 |-  ( ( ( x e. A \/ x = A ) /\ ( A \ x ) e. suc A ) -> x e. { (/) , A } )
32 5 8 31 syl2an
 |-  ( ( x e. suc A /\ x e. ( Clsd ` suc A ) ) -> x e. { (/) , A } )
33 4 32 sylbi
 |-  ( x e. ( suc A i^i ( Clsd ` suc A ) ) -> x e. { (/) , A } )
34 33 ssriv
 |-  ( suc A i^i ( Clsd ` suc A ) ) C_ { (/) , A }
35 7 isconn2
 |-  ( suc A e. Conn <-> ( suc A e. Top /\ ( suc A i^i ( Clsd ` suc A ) ) C_ { (/) , A } ) )
36 3 34 35 mpbir2an
 |-  suc A e. Conn