Metamath Proof Explorer


Theorem onsucconn

Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Assertion onsucconn
|- ( A e. On -> suc A e. Conn )

Proof

Step Hyp Ref Expression
1 suceq
 |-  ( A = if ( A e. On , A , (/) ) -> suc A = suc if ( A e. On , A , (/) ) )
2 1 eleq1d
 |-  ( A = if ( A e. On , A , (/) ) -> ( suc A e. Conn <-> suc if ( A e. On , A , (/) ) e. Conn ) )
3 0elon
 |-  (/) e. On
4 3 elimel
 |-  if ( A e. On , A , (/) ) e. On
5 4 onsucconni
 |-  suc if ( A e. On , A , (/) ) e. Conn
6 2 5 dedth
 |-  ( A e. On -> suc A e. Conn )