Metamath Proof Explorer


Theorem ordtop

Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtop ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 𝐽 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
3 nordeq ( ( Ord 𝐽 𝐽𝐽 ) → 𝐽 𝐽 )
4 3 ex ( Ord 𝐽 → ( 𝐽𝐽𝐽 𝐽 ) )
5 2 4 syl5 ( Ord 𝐽 → ( 𝐽 ∈ Top → 𝐽 𝐽 ) )
6 onsuctop ( 𝐽 ∈ On → suc 𝐽 ∈ Top )
7 6 ordtoplem ( Ord 𝐽 → ( 𝐽 𝐽𝐽 ∈ Top ) )
8 5 7 impbid ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 𝐽 ) )