Metamath Proof Explorer


Theorem ordtop

Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtop Ord J J Top J J

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 topopn J Top J J
3 nordeq Ord J J J J J
4 3 ex Ord J J J J J
5 2 4 syl5 Ord J J Top J J
6 onsuctop J On suc J Top
7 6 ordtoplem Ord J J J J Top
8 5 7 impbid Ord J J Top J J