Metamath Proof Explorer


Theorem ordtop

Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtop OrdJJTopJJ

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 topopn JTopJJ
3 nordeq OrdJJJJJ
4 3 ex OrdJJJJJ
5 2 4 syl5 OrdJJTopJJ
6 onsuctop JOnsucJTop
7 6 ordtoplem OrdJJJJTop
8 5 7 impbid OrdJJTopJJ