Metamath Proof Explorer


Theorem ordtop

Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015)

Ref Expression
Assertion ordtop
|- ( Ord J -> ( J e. Top <-> J =/= U. J ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  U. J = U. J
2 1 topopn
 |-  ( J e. Top -> U. J e. J )
3 nordeq
 |-  ( ( Ord J /\ U. J e. J ) -> J =/= U. J )
4 3 ex
 |-  ( Ord J -> ( U. J e. J -> J =/= U. J ) )
5 2 4 syl5
 |-  ( Ord J -> ( J e. Top -> J =/= U. J ) )
6 onsuctop
 |-  ( U. J e. On -> suc U. J e. Top )
7 6 ordtoplem
 |-  ( Ord J -> ( J =/= U. J -> J e. Top ) )
8 5 7 impbid
 |-  ( Ord J -> ( J e. Top <-> J =/= U. J ) )