Description: An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtop | |- ( Ord J -> ( J e. Top <-> J =/= U. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | topopn | |- ( J e. Top -> U. J e. J ) |
| 3 | nordeq | |- ( ( Ord J /\ U. J e. J ) -> J =/= U. J ) |
|
| 4 | 3 | ex | |- ( Ord J -> ( U. J e. J -> J =/= U. J ) ) |
| 5 | 2 4 | syl5 | |- ( Ord J -> ( J e. Top -> J =/= U. J ) ) |
| 6 | onsuctop | |- ( U. J e. On -> suc U. J e. Top ) |
|
| 7 | 6 | ordtoplem | |- ( Ord J -> ( J =/= U. J -> J e. Top ) ) |
| 8 | 5 7 | impbid | |- ( Ord J -> ( J e. Top <-> J =/= U. J ) ) |