Metamath Proof Explorer


Theorem onsucf1o

Description: The successor operation is a bijective function between the ordinals and the class of succesor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Hypothesis onsucf1o.f
|- F = ( x e. On |-> suc x )
Assertion onsucf1o
|- F : On -1-1-onto-> { a e. On | E. b e. On a = suc b }

Proof

Step Hyp Ref Expression
1 onsucf1o.f
 |-  F = ( x e. On |-> suc x )
2 1 fin1a2lem2
 |-  F : On -1-1-> On
3 f1fn
 |-  ( F : On -1-1-> On -> F Fn On )
4 2 3 ax-mp
 |-  F Fn On
5 1 onsucrn
 |-  ran F = { a e. On | E. b e. On a = suc b }
6 1 fin1a2lem1
 |-  ( a e. On -> ( F ` a ) = suc a )
7 1 fin1a2lem1
 |-  ( b e. On -> ( F ` b ) = suc b )
8 6 7 eqeqan12d
 |-  ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) <-> suc a = suc b ) )
9 suc11
 |-  ( ( a e. On /\ b e. On ) -> ( suc a = suc b <-> a = b ) )
10 8 9 bitrd
 |-  ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) <-> a = b ) )
11 10 biimpd
 |-  ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) )
12 11 rgen2
 |-  A. a e. On A. b e. On ( ( F ` a ) = ( F ` b ) -> a = b )
13 dff1o6
 |-  ( F : On -1-1-onto-> { a e. On | E. b e. On a = suc b } <-> ( F Fn On /\ ran F = { a e. On | E. b e. On a = suc b } /\ A. a e. On A. b e. On ( ( F ` a ) = ( F ` b ) -> a = b ) ) )
14 4 5 12 13 mpbir3an
 |-  F : On -1-1-onto-> { a e. On | E. b e. On a = suc b }