Step |
Hyp |
Ref |
Expression |
1 |
|
onsucf1o.f |
|- F = ( x e. On |-> suc x ) |
2 |
1
|
fin1a2lem2 |
|- F : On -1-1-> On |
3 |
|
f1fn |
|- ( F : On -1-1-> On -> F Fn On ) |
4 |
2 3
|
ax-mp |
|- F Fn On |
5 |
1
|
onsucrn |
|- ran F = { a e. On | E. b e. On a = suc b } |
6 |
1
|
fin1a2lem1 |
|- ( a e. On -> ( F ` a ) = suc a ) |
7 |
1
|
fin1a2lem1 |
|- ( b e. On -> ( F ` b ) = suc b ) |
8 |
6 7
|
eqeqan12d |
|- ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) <-> suc a = suc b ) ) |
9 |
|
suc11 |
|- ( ( a e. On /\ b e. On ) -> ( suc a = suc b <-> a = b ) ) |
10 |
8 9
|
bitrd |
|- ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) <-> a = b ) ) |
11 |
10
|
biimpd |
|- ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
12 |
11
|
rgen2 |
|- A. a e. On A. b e. On ( ( F ` a ) = ( F ` b ) -> a = b ) |
13 |
|
dff1o6 |
|- ( F : On -1-1-onto-> { a e. On | E. b e. On a = suc b } <-> ( F Fn On /\ ran F = { a e. On | E. b e. On a = suc b } /\ A. a e. On A. b e. On ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
14 |
4 5 12 13
|
mpbir3an |
|- F : On -1-1-onto-> { a e. On | E. b e. On a = suc b } |