| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onsucf1o.f |  |-  F = ( x e. On |-> suc x ) | 
						
							| 2 | 1 | fin1a2lem2 |  |-  F : On -1-1-> On | 
						
							| 3 |  | f1fn |  |-  ( F : On -1-1-> On -> F Fn On ) | 
						
							| 4 | 2 3 | ax-mp |  |-  F Fn On | 
						
							| 5 | 1 | onsucrn |  |-  ran F = { a e. On | E. b e. On a = suc b } | 
						
							| 6 | 1 | fin1a2lem1 |  |-  ( a e. On -> ( F ` a ) = suc a ) | 
						
							| 7 | 1 | fin1a2lem1 |  |-  ( b e. On -> ( F ` b ) = suc b ) | 
						
							| 8 | 6 7 | eqeqan12d |  |-  ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) <-> suc a = suc b ) ) | 
						
							| 9 |  | suc11 |  |-  ( ( a e. On /\ b e. On ) -> ( suc a = suc b <-> a = b ) ) | 
						
							| 10 | 8 9 | bitrd |  |-  ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) <-> a = b ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( ( a e. On /\ b e. On ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) | 
						
							| 12 | 11 | rgen2 |  |-  A. a e. On A. b e. On ( ( F ` a ) = ( F ` b ) -> a = b ) | 
						
							| 13 |  | dff1o6 |  |-  ( F : On -1-1-onto-> { a e. On | E. b e. On a = suc b } <-> ( F Fn On /\ ran F = { a e. On | E. b e. On a = suc b } /\ A. a e. On A. b e. On ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) | 
						
							| 14 | 4 5 12 13 | mpbir3an |  |-  F : On -1-1-onto-> { a e. On | E. b e. On a = suc b } |