Metamath Proof Explorer


Theorem onsucrn

Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Hypothesis onsucrn.f
|- F = ( x e. On |-> suc x )
Assertion onsucrn
|- ran F = { a e. On | E. b e. On a = suc b }

Proof

Step Hyp Ref Expression
1 onsucrn.f
 |-  F = ( x e. On |-> suc x )
2 simpr
 |-  ( ( x e. On /\ a = suc x ) -> a = suc x )
3 onsuc
 |-  ( x e. On -> suc x e. On )
4 3 adantr
 |-  ( ( x e. On /\ a = suc x ) -> suc x e. On )
5 2 4 eqeltrd
 |-  ( ( x e. On /\ a = suc x ) -> a e. On )
6 5 rexlimiva
 |-  ( E. x e. On a = suc x -> a e. On )
7 6 pm4.71ri
 |-  ( E. x e. On a = suc x <-> ( a e. On /\ E. x e. On a = suc x ) )
8 suceq
 |-  ( x = b -> suc x = suc b )
9 8 eqeq2d
 |-  ( x = b -> ( a = suc x <-> a = suc b ) )
10 9 cbvrexvw
 |-  ( E. x e. On a = suc x <-> E. b e. On a = suc b )
11 10 anbi2i
 |-  ( ( a e. On /\ E. x e. On a = suc x ) <-> ( a e. On /\ E. b e. On a = suc b ) )
12 7 11 bitri
 |-  ( E. x e. On a = suc x <-> ( a e. On /\ E. b e. On a = suc b ) )
13 12 abbii
 |-  { a | E. x e. On a = suc x } = { a | ( a e. On /\ E. b e. On a = suc b ) }
14 1 rnmpt
 |-  ran F = { a | E. x e. On a = suc x }
15 df-rab
 |-  { a e. On | E. b e. On a = suc b } = { a | ( a e. On /\ E. b e. On a = suc b ) }
16 13 14 15 3eqtr4i
 |-  ran F = { a e. On | E. b e. On a = suc b }