Step |
Hyp |
Ref |
Expression |
1 |
|
onsucrn.f |
⊢ 𝐹 = ( 𝑥 ∈ On ↦ suc 𝑥 ) |
2 |
|
simpr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑎 = suc 𝑥 ) → 𝑎 = suc 𝑥 ) |
3 |
|
onsuc |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑎 = suc 𝑥 ) → suc 𝑥 ∈ On ) |
5 |
2 4
|
eqeltrd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑎 = suc 𝑥 ) → 𝑎 ∈ On ) |
6 |
5
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 → 𝑎 ∈ On ) |
7 |
6
|
pm4.71ri |
⊢ ( ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ( 𝑎 ∈ On ∧ ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 ) ) |
8 |
|
suceq |
⊢ ( 𝑥 = 𝑏 → suc 𝑥 = suc 𝑏 ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑥 = 𝑏 → ( 𝑎 = suc 𝑥 ↔ 𝑎 = suc 𝑏 ) ) |
10 |
9
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑎 ∈ On ∧ ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 ) ↔ ( 𝑎 ∈ On ∧ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ) ) |
12 |
7 11
|
bitri |
⊢ ( ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ( 𝑎 ∈ On ∧ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ) ) |
13 |
12
|
abbii |
⊢ { 𝑎 ∣ ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 } = { 𝑎 ∣ ( 𝑎 ∈ On ∧ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ) } |
14 |
1
|
rnmpt |
⊢ ran 𝐹 = { 𝑎 ∣ ∃ 𝑥 ∈ On 𝑎 = suc 𝑥 } |
15 |
|
df-rab |
⊢ { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } = { 𝑎 ∣ ( 𝑎 ∈ On ∧ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 ) } |
16 |
13 14 15
|
3eqtr4i |
⊢ ran 𝐹 = { 𝑎 ∈ On ∣ ∃ 𝑏 ∈ On 𝑎 = suc 𝑏 } |