| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onsucrn.f | ⊢ 𝐹  =  ( 𝑥  ∈  On  ↦  suc  𝑥 ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑥  ∈  On  ∧  𝑎  =  suc  𝑥 )  →  𝑎  =  suc  𝑥 ) | 
						
							| 3 |  | onsuc | ⊢ ( 𝑥  ∈  On  →  suc  𝑥  ∈  On ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑥  ∈  On  ∧  𝑎  =  suc  𝑥 )  →  suc  𝑥  ∈  On ) | 
						
							| 5 | 2 4 | eqeltrd | ⊢ ( ( 𝑥  ∈  On  ∧  𝑎  =  suc  𝑥 )  →  𝑎  ∈  On ) | 
						
							| 6 | 5 | rexlimiva | ⊢ ( ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥  →  𝑎  ∈  On ) | 
						
							| 7 | 6 | pm4.71ri | ⊢ ( ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥  ↔  ( 𝑎  ∈  On  ∧  ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥 ) ) | 
						
							| 8 |  | suceq | ⊢ ( 𝑥  =  𝑏  →  suc  𝑥  =  suc  𝑏 ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑥  =  𝑏  →  ( 𝑎  =  suc  𝑥  ↔  𝑎  =  suc  𝑏 ) ) | 
						
							| 10 | 9 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥  ↔  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( 𝑎  ∈  On  ∧  ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥 )  ↔  ( 𝑎  ∈  On  ∧  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 ) ) | 
						
							| 12 | 7 11 | bitri | ⊢ ( ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥  ↔  ( 𝑎  ∈  On  ∧  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 ) ) | 
						
							| 13 | 12 | abbii | ⊢ { 𝑎  ∣  ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥 }  =  { 𝑎  ∣  ( 𝑎  ∈  On  ∧  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 ) } | 
						
							| 14 | 1 | rnmpt | ⊢ ran  𝐹  =  { 𝑎  ∣  ∃ 𝑥  ∈  On 𝑎  =  suc  𝑥 } | 
						
							| 15 |  | df-rab | ⊢ { 𝑎  ∈  On  ∣  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 }  =  { 𝑎  ∣  ( 𝑎  ∈  On  ∧  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 ) } | 
						
							| 16 | 13 14 15 | 3eqtr4i | ⊢ ran  𝐹  =  { 𝑎  ∈  On  ∣  ∃ 𝑏  ∈  On 𝑎  =  suc  𝑏 } |