| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disj |
|- ( ( On i^i ( _V X. _V ) ) = (/) <-> A. x e. On -. x e. ( _V X. _V ) ) |
| 2 |
|
on0eqel |
|- ( x e. On -> ( x = (/) \/ (/) e. x ) ) |
| 3 |
|
0nelxp |
|- -. (/) e. ( _V X. _V ) |
| 4 |
|
eleq1 |
|- ( x = (/) -> ( x e. ( _V X. _V ) <-> (/) e. ( _V X. _V ) ) ) |
| 5 |
3 4
|
mtbiri |
|- ( x = (/) -> -. x e. ( _V X. _V ) ) |
| 6 |
|
0nelelxp |
|- ( x e. ( _V X. _V ) -> -. (/) e. x ) |
| 7 |
6
|
con2i |
|- ( (/) e. x -> -. x e. ( _V X. _V ) ) |
| 8 |
5 7
|
jaoi |
|- ( ( x = (/) \/ (/) e. x ) -> -. x e. ( _V X. _V ) ) |
| 9 |
2 8
|
syl |
|- ( x e. On -> -. x e. ( _V X. _V ) ) |
| 10 |
1 9
|
mprgbir |
|- ( On i^i ( _V X. _V ) ) = (/) |