Description: Deduce equality of a relation and an ordered-pair class abstraction. Compare eqabdv . (Contributed by NM, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabbi2dv.1 | |- Rel A |
|
| opabbi2dv.3 | |- ( ph -> ( <. x , y >. e. A <-> ps ) ) |
||
| Assertion | opabbi2dv | |- ( ph -> A = { <. x , y >. | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbi2dv.1 | |- Rel A |
|
| 2 | opabbi2dv.3 | |- ( ph -> ( <. x , y >. e. A <-> ps ) ) |
|
| 3 | opabid2 | |- ( Rel A -> { <. x , y >. | <. x , y >. e. A } = A ) |
|
| 4 | 1 3 | ax-mp | |- { <. x , y >. | <. x , y >. e. A } = A |
| 5 | 2 | opabbidv | |- ( ph -> { <. x , y >. | <. x , y >. e. A } = { <. x , y >. | ps } ) |
| 6 | 4 5 | eqtr3id | |- ( ph -> A = { <. x , y >. | ps } ) |