| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opabssi.1 |
|- ( ph -> <. x , y >. e. A ) |
| 2 |
|
df-opab |
|- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 3 |
|
eleq1 |
|- ( z = <. x , y >. -> ( z e. A <-> <. x , y >. e. A ) ) |
| 4 |
3
|
biimprd |
|- ( z = <. x , y >. -> ( <. x , y >. e. A -> z e. A ) ) |
| 5 |
4 1
|
impel |
|- ( ( z = <. x , y >. /\ ph ) -> z e. A ) |
| 6 |
5
|
exlimivv |
|- ( E. x E. y ( z = <. x , y >. /\ ph ) -> z e. A ) |
| 7 |
6
|
abssi |
|- { z | E. x E. y ( z = <. x , y >. /\ ph ) } C_ A |
| 8 |
2 7
|
eqsstri |
|- { <. x , y >. | ph } C_ A |