Description: Sufficient condition for a collection of ordered pairs to be a subclass of a relation. (Contributed by Peter Mazsa, 21-Oct-2019) (Revised by Thierry Arnoux, 18-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opabssi.1 | ||
| Assertion | opabssi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabssi.1 | ||
| 2 | df-opab | ||
| 3 | eleq1 | ||
| 4 | 3 | biimprd | |
| 5 | 4 1 | impel | |
| 6 | 5 | exlimivv | |
| 7 | 6 | abssi | |
| 8 | 2 7 | eqsstri |