Metamath Proof Explorer


Theorem opelopab4

Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab . (Contributed by Alan Sare, 8-Feb-2014) (Revised by Mario Carneiro, 6-May-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion opelopab4
|- ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) )

Proof

Step Hyp Ref Expression
1 elopab
 |-  ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( <. u , v >. = <. x , y >. /\ ph ) )
2 vex
 |-  x e. _V
3 vex
 |-  y e. _V
4 2 3 opth
 |-  ( <. x , y >. = <. u , v >. <-> ( x = u /\ y = v ) )
5 eqcom
 |-  ( <. x , y >. = <. u , v >. <-> <. u , v >. = <. x , y >. )
6 4 5 bitr3i
 |-  ( ( x = u /\ y = v ) <-> <. u , v >. = <. x , y >. )
7 6 anbi1i
 |-  ( ( ( x = u /\ y = v ) /\ ph ) <-> ( <. u , v >. = <. x , y >. /\ ph ) )
8 7 2exbii
 |-  ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) <-> E. x E. y ( <. u , v >. = <. x , y >. /\ ph ) )
9 1 8 bitr4i
 |-  ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) )