| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elopab |  |-  ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( <. u , v >. = <. x , y >. /\ ph ) ) | 
						
							| 2 |  | vex |  |-  x e. _V | 
						
							| 3 |  | vex |  |-  y e. _V | 
						
							| 4 | 2 3 | opth |  |-  ( <. x , y >. = <. u , v >. <-> ( x = u /\ y = v ) ) | 
						
							| 5 |  | eqcom |  |-  ( <. x , y >. = <. u , v >. <-> <. u , v >. = <. x , y >. ) | 
						
							| 6 | 4 5 | bitr3i |  |-  ( ( x = u /\ y = v ) <-> <. u , v >. = <. x , y >. ) | 
						
							| 7 | 6 | anbi1i |  |-  ( ( ( x = u /\ y = v ) /\ ph ) <-> ( <. u , v >. = <. x , y >. /\ ph ) ) | 
						
							| 8 | 7 | 2exbii |  |-  ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) <-> E. x E. y ( <. u , v >. = <. x , y >. /\ ph ) ) | 
						
							| 9 | 1 8 | bitr4i |  |-  ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |