Metamath Proof Explorer


Theorem opelopab4

Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab . (Contributed by Alan Sare, 8-Feb-2014) (Revised by Mario Carneiro, 6-May-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion opelopab4 uvxy|φxyx=uy=vφ

Proof

Step Hyp Ref Expression
1 elopab uvxy|φxyuv=xyφ
2 vex xV
3 vex yV
4 2 3 opth xy=uvx=uy=v
5 eqcom xy=uvuv=xy
6 4 5 bitr3i x=uy=vuv=xy
7 6 anbi1i x=uy=vφuv=xyφ
8 7 2exbii xyx=uy=vφxyuv=xyφ
9 1 8 bitr4i uvxy|φxyx=uy=vφ