Metamath Proof Explorer


Theorem opltn0

Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses opltne0.b
|- B = ( Base ` K )
opltne0.s
|- .< = ( lt ` K )
opltne0.z
|- .0. = ( 0. ` K )
Assertion opltn0
|- ( ( K e. OP /\ X e. B ) -> ( .0. .< X <-> X =/= .0. ) )

Proof

Step Hyp Ref Expression
1 opltne0.b
 |-  B = ( Base ` K )
2 opltne0.s
 |-  .< = ( lt ` K )
3 opltne0.z
 |-  .0. = ( 0. ` K )
4 simpl
 |-  ( ( K e. OP /\ X e. B ) -> K e. OP )
5 1 3 op0cl
 |-  ( K e. OP -> .0. e. B )
6 5 adantr
 |-  ( ( K e. OP /\ X e. B ) -> .0. e. B )
7 simpr
 |-  ( ( K e. OP /\ X e. B ) -> X e. B )
8 eqid
 |-  ( le ` K ) = ( le ` K )
9 8 2 pltval
 |-  ( ( K e. OP /\ .0. e. B /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) )
10 4 6 7 9 syl3anc
 |-  ( ( K e. OP /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) )
11 necom
 |-  ( X =/= .0. <-> .0. =/= X )
12 1 8 3 op0le
 |-  ( ( K e. OP /\ X e. B ) -> .0. ( le ` K ) X )
13 12 biantrurd
 |-  ( ( K e. OP /\ X e. B ) -> ( .0. =/= X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) )
14 11 13 bitr2id
 |-  ( ( K e. OP /\ X e. B ) -> ( ( .0. ( le ` K ) X /\ .0. =/= X ) <-> X =/= .0. ) )
15 10 14 bitrd
 |-  ( ( K e. OP /\ X e. B ) -> ( .0. .< X <-> X =/= .0. ) )