Step |
Hyp |
Ref |
Expression |
1 |
|
opltne0.b |
|- B = ( Base ` K ) |
2 |
|
opltne0.s |
|- .< = ( lt ` K ) |
3 |
|
opltne0.z |
|- .0. = ( 0. ` K ) |
4 |
|
simpl |
|- ( ( K e. OP /\ X e. B ) -> K e. OP ) |
5 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
6 |
5
|
adantr |
|- ( ( K e. OP /\ X e. B ) -> .0. e. B ) |
7 |
|
simpr |
|- ( ( K e. OP /\ X e. B ) -> X e. B ) |
8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
9 |
8 2
|
pltval |
|- ( ( K e. OP /\ .0. e. B /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) ) |
10 |
4 6 7 9
|
syl3anc |
|- ( ( K e. OP /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) ) |
11 |
|
necom |
|- ( X =/= .0. <-> .0. =/= X ) |
12 |
1 8 3
|
op0le |
|- ( ( K e. OP /\ X e. B ) -> .0. ( le ` K ) X ) |
13 |
12
|
biantrurd |
|- ( ( K e. OP /\ X e. B ) -> ( .0. =/= X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) ) |
14 |
11 13
|
bitr2id |
|- ( ( K e. OP /\ X e. B ) -> ( ( .0. ( le ` K ) X /\ .0. =/= X ) <-> X =/= .0. ) ) |
15 |
10 14
|
bitrd |
|- ( ( K e. OP /\ X e. B ) -> ( .0. .< X <-> X =/= .0. ) ) |