Step |
Hyp |
Ref |
Expression |
1 |
|
opltne0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
opltne0.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
opltne0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
simpl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
5 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
9 |
8 2
|
pltval |
⊢ ( ( 𝐾 ∈ OP ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
10 |
4 6 7 9
|
syl3anc |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
11 |
|
necom |
⊢ ( 𝑋 ≠ 0 ↔ 0 ≠ 𝑋 ) |
12 |
1 8 3
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
13 |
12
|
biantrurd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 0 ≠ 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
14 |
11 13
|
bitr2id |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ≠ 𝑋 ) ↔ 𝑋 ≠ 0 ) ) |
15 |
10 14
|
bitrd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 ) ) |