| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfval3.g |
|- ( ph -> F = <. G , K >. ) |
| 2 |
|
oppfval3.f |
|- ( ph -> F e. ( C Func D ) ) |
| 3 |
1
|
fveq2d |
|- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. G , K >. ) ) |
| 4 |
|
df-ov |
|- ( G oppFunc K ) = ( oppFunc ` <. G , K >. ) |
| 5 |
3 4
|
eqtr4di |
|- ( ph -> ( oppFunc ` F ) = ( G oppFunc K ) ) |
| 6 |
1 2
|
eqeltrrd |
|- ( ph -> <. G , K >. e. ( C Func D ) ) |
| 7 |
|
df-br |
|- ( G ( C Func D ) K <-> <. G , K >. e. ( C Func D ) ) |
| 8 |
6 7
|
sylibr |
|- ( ph -> G ( C Func D ) K ) |
| 9 |
|
oppfval |
|- ( G ( C Func D ) K -> ( G oppFunc K ) = <. G , tpos K >. ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( G oppFunc K ) = <. G , tpos K >. ) |
| 11 |
5 10
|
eqtrd |
|- ( ph -> ( oppFunc ` F ) = <. G , tpos K >. ) |