Step |
Hyp |
Ref |
Expression |
1 |
|
mndtccat.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
2 |
|
mndtccat.m |
|- ( ph -> M e. Mnd ) |
3 |
|
oppgoppchom.d |
|- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
4 |
|
oppgoppchom.o |
|- O = ( oppCat ` C ) |
5 |
|
oppgoppchom.x |
|- ( ph -> X e. ( Base ` D ) ) |
6 |
|
oppgoppchom.y |
|- ( ph -> Y e. ( Base ` O ) ) |
7 |
|
eqid |
|- ( oppG ` M ) = ( oppG ` M ) |
8 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
9 |
7 8
|
oppgid |
|- ( 0g ` M ) = ( 0g ` ( oppG ` M ) ) |
10 |
9
|
a1i |
|- ( ph -> ( 0g ` M ) = ( 0g ` ( oppG ` M ) ) ) |
11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
12 |
4 11
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
13 |
12
|
eqcomi |
|- ( Base ` O ) = ( Base ` C ) |
14 |
13
|
a1i |
|- ( ph -> ( Base ` O ) = ( Base ` C ) ) |
15 |
1 2
|
mndtccat |
|- ( ph -> C e. Cat ) |
16 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
17 |
4 16
|
oppcid |
|- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
18 |
15 17
|
syl |
|- ( ph -> ( Id ` O ) = ( Id ` C ) ) |
19 |
1 2 14 6 18
|
mndtcid |
|- ( ph -> ( ( Id ` O ) ` Y ) = ( 0g ` M ) ) |
20 |
7
|
oppgmnd |
|- ( M e. Mnd -> ( oppG ` M ) e. Mnd ) |
21 |
2 20
|
syl |
|- ( ph -> ( oppG ` M ) e. Mnd ) |
22 |
|
eqidd |
|- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
23 |
|
eqidd |
|- ( ph -> ( Id ` D ) = ( Id ` D ) ) |
24 |
3 21 22 5 23
|
mndtcid |
|- ( ph -> ( ( Id ` D ) ` X ) = ( 0g ` ( oppG ` M ) ) ) |
25 |
10 19 24
|
3eqtr4rd |
|- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) |