Metamath Proof Explorer


Theorem opsqrlem2

Description: Lemma for opsqri . FN is the recursive function A_n (starting at n=1 instead of 0) of Theorem 9.4-2 of Kreyszig p. 476. (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1
|- T e. HrmOp
opsqrlem2.2
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) )
opsqrlem2.3
|- F = seq 1 ( S , ( NN X. { 0hop } ) )
Assertion opsqrlem2
|- ( F ` 1 ) = 0hop

Proof

Step Hyp Ref Expression
1 opsqrlem2.1
 |-  T e. HrmOp
2 opsqrlem2.2
 |-  S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) )
3 opsqrlem2.3
 |-  F = seq 1 ( S , ( NN X. { 0hop } ) )
4 3 fveq1i
 |-  ( F ` 1 ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` 1 )
5 1z
 |-  1 e. ZZ
6 seq1
 |-  ( 1 e. ZZ -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` 1 ) = ( ( NN X. { 0hop } ) ` 1 ) )
7 5 6 ax-mp
 |-  ( seq 1 ( S , ( NN X. { 0hop } ) ) ` 1 ) = ( ( NN X. { 0hop } ) ` 1 )
8 1nn
 |-  1 e. NN
9 0hmop
 |-  0hop e. HrmOp
10 9 elexi
 |-  0hop e. _V
11 10 fvconst2
 |-  ( 1 e. NN -> ( ( NN X. { 0hop } ) ` 1 ) = 0hop )
12 8 11 ax-mp
 |-  ( ( NN X. { 0hop } ) ` 1 ) = 0hop
13 4 7 12 3eqtri
 |-  ( F ` 1 ) = 0hop