| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsqrlem2.1 |
|- T e. HrmOp |
| 2 |
|
opsqrlem2.2 |
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) |
| 3 |
|
opsqrlem2.3 |
|- F = seq 1 ( S , ( NN X. { 0hop } ) ) |
| 4 |
3
|
fveq1i |
|- ( F ` 1 ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` 1 ) |
| 5 |
|
1z |
|- 1 e. ZZ |
| 6 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` 1 ) = ( ( NN X. { 0hop } ) ` 1 ) ) |
| 7 |
5 6
|
ax-mp |
|- ( seq 1 ( S , ( NN X. { 0hop } ) ) ` 1 ) = ( ( NN X. { 0hop } ) ` 1 ) |
| 8 |
|
1nn |
|- 1 e. NN |
| 9 |
|
0hmop |
|- 0hop e. HrmOp |
| 10 |
9
|
elexi |
|- 0hop e. _V |
| 11 |
10
|
fvconst2 |
|- ( 1 e. NN -> ( ( NN X. { 0hop } ) ` 1 ) = 0hop ) |
| 12 |
8 11
|
ax-mp |
|- ( ( NN X. { 0hop } ) ` 1 ) = 0hop |
| 13 |
4 7 12
|
3eqtri |
|- ( F ` 1 ) = 0hop |