Step |
Hyp |
Ref |
Expression |
1 |
|
opsqrlem2.1 |
|- T e. HrmOp |
2 |
|
opsqrlem2.2 |
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) |
3 |
|
opsqrlem2.3 |
|- F = seq 1 ( S , ( NN X. { 0hop } ) ) |
4 |
|
id |
|- ( z = G -> z = G ) |
5 |
4 4
|
coeq12d |
|- ( z = G -> ( z o. z ) = ( G o. G ) ) |
6 |
5
|
oveq2d |
|- ( z = G -> ( T -op ( z o. z ) ) = ( T -op ( G o. G ) ) ) |
7 |
6
|
oveq2d |
|- ( z = G -> ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) = ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) |
8 |
4 7
|
oveq12d |
|- ( z = G -> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) ) |
9 |
|
eqidd |
|- ( w = H -> ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) ) |
10 |
|
id |
|- ( x = z -> x = z ) |
11 |
10 10
|
coeq12d |
|- ( x = z -> ( x o. x ) = ( z o. z ) ) |
12 |
11
|
oveq2d |
|- ( x = z -> ( T -op ( x o. x ) ) = ( T -op ( z o. z ) ) ) |
13 |
12
|
oveq2d |
|- ( x = z -> ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) = ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) |
14 |
10 13
|
oveq12d |
|- ( x = z -> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) = ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) ) |
15 |
|
eqidd |
|- ( y = w -> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) = ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) ) |
16 |
14 15
|
cbvmpov |
|- ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) = ( z e. HrmOp , w e. HrmOp |-> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) ) |
17 |
2 16
|
eqtri |
|- S = ( z e. HrmOp , w e. HrmOp |-> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) ) |
18 |
|
ovex |
|- ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) e. _V |
19 |
8 9 17 18
|
ovmpo |
|- ( ( G e. HrmOp /\ H e. HrmOp ) -> ( G S H ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) ) |