Metamath Proof Explorer


Theorem opsqrlem3

Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1
|- T e. HrmOp
opsqrlem2.2
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) )
opsqrlem2.3
|- F = seq 1 ( S , ( NN X. { 0hop } ) )
Assertion opsqrlem3
|- ( ( G e. HrmOp /\ H e. HrmOp ) -> ( G S H ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) )

Proof

Step Hyp Ref Expression
1 opsqrlem2.1
 |-  T e. HrmOp
2 opsqrlem2.2
 |-  S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) )
3 opsqrlem2.3
 |-  F = seq 1 ( S , ( NN X. { 0hop } ) )
4 id
 |-  ( z = G -> z = G )
5 4 4 coeq12d
 |-  ( z = G -> ( z o. z ) = ( G o. G ) )
6 5 oveq2d
 |-  ( z = G -> ( T -op ( z o. z ) ) = ( T -op ( G o. G ) ) )
7 6 oveq2d
 |-  ( z = G -> ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) = ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) )
8 4 7 oveq12d
 |-  ( z = G -> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) )
9 eqidd
 |-  ( w = H -> ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) )
10 id
 |-  ( x = z -> x = z )
11 10 10 coeq12d
 |-  ( x = z -> ( x o. x ) = ( z o. z ) )
12 11 oveq2d
 |-  ( x = z -> ( T -op ( x o. x ) ) = ( T -op ( z o. z ) ) )
13 12 oveq2d
 |-  ( x = z -> ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) = ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) )
14 10 13 oveq12d
 |-  ( x = z -> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) = ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) )
15 eqidd
 |-  ( y = w -> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) = ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) )
16 14 15 cbvmpov
 |-  ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) = ( z e. HrmOp , w e. HrmOp |-> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) )
17 2 16 eqtri
 |-  S = ( z e. HrmOp , w e. HrmOp |-> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) )
18 ovex
 |-  ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) e. _V
19 8 9 17 18 ovmpo
 |-  ( ( G e. HrmOp /\ H e. HrmOp ) -> ( G S H ) = ( G +op ( ( 1 / 2 ) .op ( T -op ( G o. G ) ) ) ) )