| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsqrlem2.1 |
|- T e. HrmOp |
| 2 |
|
opsqrlem2.2 |
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) |
| 3 |
|
opsqrlem2.3 |
|- F = seq 1 ( S , ( NN X. { 0hop } ) ) |
| 4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 5 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 6 |
|
0hmop |
|- 0hop e. HrmOp |
| 7 |
6
|
elexi |
|- 0hop e. _V |
| 8 |
7
|
fvconst2 |
|- ( z e. NN -> ( ( NN X. { 0hop } ) ` z ) = 0hop ) |
| 9 |
8 6
|
eqeltrdi |
|- ( z e. NN -> ( ( NN X. { 0hop } ) ` z ) e. HrmOp ) |
| 10 |
9
|
adantl |
|- ( ( T. /\ z e. NN ) -> ( ( NN X. { 0hop } ) ` z ) e. HrmOp ) |
| 11 |
1 2 3
|
opsqrlem3 |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( z S w ) = ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) ) |
| 12 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 13 |
|
simpl |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> z e. HrmOp ) |
| 14 |
|
eqidd |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( z o. z ) = ( z o. z ) ) |
| 15 |
|
hmopco |
|- ( ( z e. HrmOp /\ z e. HrmOp /\ ( z o. z ) = ( z o. z ) ) -> ( z o. z ) e. HrmOp ) |
| 16 |
13 13 14 15
|
syl3anc |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( z o. z ) e. HrmOp ) |
| 17 |
|
hmopd |
|- ( ( T e. HrmOp /\ ( z o. z ) e. HrmOp ) -> ( T -op ( z o. z ) ) e. HrmOp ) |
| 18 |
1 16 17
|
sylancr |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( T -op ( z o. z ) ) e. HrmOp ) |
| 19 |
|
hmopm |
|- ( ( ( 1 / 2 ) e. RR /\ ( T -op ( z o. z ) ) e. HrmOp ) -> ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) e. HrmOp ) |
| 20 |
12 18 19
|
sylancr |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) e. HrmOp ) |
| 21 |
|
hmops |
|- ( ( z e. HrmOp /\ ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) e. HrmOp ) -> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) e. HrmOp ) |
| 22 |
20 21
|
syldan |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( z +op ( ( 1 / 2 ) .op ( T -op ( z o. z ) ) ) ) e. HrmOp ) |
| 23 |
11 22
|
eqeltrd |
|- ( ( z e. HrmOp /\ w e. HrmOp ) -> ( z S w ) e. HrmOp ) |
| 24 |
23
|
adantl |
|- ( ( T. /\ ( z e. HrmOp /\ w e. HrmOp ) ) -> ( z S w ) e. HrmOp ) |
| 25 |
4 5 10 24
|
seqf |
|- ( T. -> seq 1 ( S , ( NN X. { 0hop } ) ) : NN --> HrmOp ) |
| 26 |
25
|
mptru |
|- seq 1 ( S , ( NN X. { 0hop } ) ) : NN --> HrmOp |
| 27 |
3
|
feq1i |
|- ( F : NN --> HrmOp <-> seq 1 ( S , ( NN X. { 0hop } ) ) : NN --> HrmOp ) |
| 28 |
26 27
|
mpbir |
|- F : NN --> HrmOp |