Metamath Proof Explorer


Theorem opsqrlem4

Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1 T HrmOp
opsqrlem2.2 S = x HrmOp , y HrmOp x + op 1 2 · op T - op x x
opsqrlem2.3 F = seq 1 S × 0 hop
Assertion opsqrlem4 F : HrmOp

Proof

Step Hyp Ref Expression
1 opsqrlem2.1 T HrmOp
2 opsqrlem2.2 S = x HrmOp , y HrmOp x + op 1 2 · op T - op x x
3 opsqrlem2.3 F = seq 1 S × 0 hop
4 nnuz = 1
5 1zzd 1
6 0hmop 0 hop HrmOp
7 6 elexi 0 hop V
8 7 fvconst2 z × 0 hop z = 0 hop
9 8 6 eqeltrdi z × 0 hop z HrmOp
10 9 adantl z × 0 hop z HrmOp
11 1 2 3 opsqrlem3 z HrmOp w HrmOp z S w = z + op 1 2 · op T - op z z
12 halfre 1 2
13 simpl z HrmOp w HrmOp z HrmOp
14 eqidd z HrmOp w HrmOp z z = z z
15 hmopco z HrmOp z HrmOp z z = z z z z HrmOp
16 13 13 14 15 syl3anc z HrmOp w HrmOp z z HrmOp
17 hmopd T HrmOp z z HrmOp T - op z z HrmOp
18 1 16 17 sylancr z HrmOp w HrmOp T - op z z HrmOp
19 hmopm 1 2 T - op z z HrmOp 1 2 · op T - op z z HrmOp
20 12 18 19 sylancr z HrmOp w HrmOp 1 2 · op T - op z z HrmOp
21 hmops z HrmOp 1 2 · op T - op z z HrmOp z + op 1 2 · op T - op z z HrmOp
22 20 21 syldan z HrmOp w HrmOp z + op 1 2 · op T - op z z HrmOp
23 11 22 eqeltrd z HrmOp w HrmOp z S w HrmOp
24 23 adantl z HrmOp w HrmOp z S w HrmOp
25 4 5 10 24 seqf seq 1 S × 0 hop : HrmOp
26 25 mptru seq 1 S × 0 hop : HrmOp
27 3 feq1i F : HrmOp seq 1 S × 0 hop : HrmOp
28 26 27 mpbir F : HrmOp