Metamath Proof Explorer


Theorem hmopco

Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopco THrmOpUHrmOpTU=UTTUHrmOp

Proof

Step Hyp Ref Expression
1 hmopf THrmOpT:
2 hmopf UHrmOpU:
3 fco T:U:TU:
4 1 2 3 syl2an THrmOpUHrmOpTU:
5 4 3adant3 THrmOpUHrmOpTU=UTTU:
6 fvco3 U:yTUy=TUy
7 2 6 sylan UHrmOpyTUy=TUy
8 7 oveq2d UHrmOpyxihTUy=xihTUy
9 8 ad2ant2l THrmOpUHrmOpxyxihTUy=xihTUy
10 simpll THrmOpUHrmOpxyTHrmOp
11 simprl THrmOpUHrmOpxyx
12 2 ffvelcdmda UHrmOpyUy
13 12 ad2ant2l THrmOpUHrmOpxyUy
14 hmop THrmOpxUyxihTUy=TxihUy
15 10 11 13 14 syl3anc THrmOpUHrmOpxyxihTUy=TxihUy
16 simplr THrmOpUHrmOpxyUHrmOp
17 1 ffvelcdmda THrmOpxTx
18 17 ad2ant2r THrmOpUHrmOpxyTx
19 simprr THrmOpUHrmOpxyy
20 hmop UHrmOpTxyTxihUy=UTxihy
21 16 18 19 20 syl3anc THrmOpUHrmOpxyTxihUy=UTxihy
22 9 15 21 3eqtrd THrmOpUHrmOpxyxihTUy=UTxihy
23 fvco3 T:xUTx=UTx
24 1 23 sylan THrmOpxUTx=UTx
25 24 oveq1d THrmOpxUTxihy=UTxihy
26 25 ad2ant2r THrmOpUHrmOpxyUTxihy=UTxihy
27 22 26 eqtr4d THrmOpUHrmOpxyxihTUy=UTxihy
28 27 3adantl3 THrmOpUHrmOpTU=UTxyxihTUy=UTxihy
29 fveq1 TU=UTTUx=UTx
30 29 oveq1d TU=UTTUxihy=UTxihy
31 30 3ad2ant3 THrmOpUHrmOpTU=UTTUxihy=UTxihy
32 31 adantr THrmOpUHrmOpTU=UTxyTUxihy=UTxihy
33 28 32 eqtr4d THrmOpUHrmOpTU=UTxyxihTUy=TUxihy
34 33 ralrimivva THrmOpUHrmOpTU=UTxyxihTUy=TUxihy
35 elhmop TUHrmOpTU:xyxihTUy=TUxihy
36 5 34 35 sylanbrc THrmOpUHrmOpTU=UTTUHrmOp