Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hmopco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopf | |
|
2 | hmopf | |
|
3 | fco | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | 3adant3 | |
6 | fvco3 | |
|
7 | 2 6 | sylan | |
8 | 7 | oveq2d | |
9 | 8 | ad2ant2l | |
10 | simpll | |
|
11 | simprl | |
|
12 | 2 | ffvelcdmda | |
13 | 12 | ad2ant2l | |
14 | hmop | |
|
15 | 10 11 13 14 | syl3anc | |
16 | simplr | |
|
17 | 1 | ffvelcdmda | |
18 | 17 | ad2ant2r | |
19 | simprr | |
|
20 | hmop | |
|
21 | 16 18 19 20 | syl3anc | |
22 | 9 15 21 | 3eqtrd | |
23 | fvco3 | |
|
24 | 1 23 | sylan | |
25 | 24 | oveq1d | |
26 | 25 | ad2ant2r | |
27 | 22 26 | eqtr4d | |
28 | 27 | 3adantl3 | |
29 | fveq1 | |
|
30 | 29 | oveq1d | |
31 | 30 | 3ad2ant3 | |
32 | 31 | adantr | |
33 | 28 32 | eqtr4d | |
34 | 33 | ralrimivva | |
35 | elhmop | |
|
36 | 5 34 35 | sylanbrc | |