Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hmops | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopf | |
|
2 | hmopf | |
|
3 | hoaddcl | |
|
4 | 1 2 3 | syl2an | |
5 | hmop | |
|
6 | 5 | 3expb | |
7 | hmop | |
|
8 | 7 | 3expb | |
9 | 6 8 | oveqan12d | |
10 | 9 | anandirs | |
11 | 1 2 | anim12i | |
12 | hosval | |
|
13 | 12 | oveq2d | |
14 | 13 | 3expa | |
15 | 14 | adantrl | |
16 | simprl | |
|
17 | ffvelcdm | |
|
18 | 17 | ad2ant2rl | |
19 | ffvelcdm | |
|
20 | 19 | ad2ant2l | |
21 | his7 | |
|
22 | 16 18 20 21 | syl3anc | |
23 | 15 22 | eqtrd | |
24 | 11 23 | sylan | |
25 | hosval | |
|
26 | 25 | oveq1d | |
27 | 26 | 3expa | |
28 | 27 | adantrr | |
29 | ffvelcdm | |
|
30 | 29 | ad2ant2r | |
31 | ffvelcdm | |
|
32 | 31 | ad2ant2lr | |
33 | simprr | |
|
34 | ax-his2 | |
|
35 | 30 32 33 34 | syl3anc | |
36 | 28 35 | eqtrd | |
37 | 11 36 | sylan | |
38 | 10 24 37 | 3eqtr4d | |
39 | 38 | ralrimivva | |
40 | elhmop | |
|
41 | 4 39 40 | sylanbrc | |