Metamath Proof Explorer


Theorem hmops

Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hmops THrmOpUHrmOpT+opUHrmOp

Proof

Step Hyp Ref Expression
1 hmopf THrmOpT:
2 hmopf UHrmOpU:
3 hoaddcl T:U:T+opU:
4 1 2 3 syl2an THrmOpUHrmOpT+opU:
5 hmop THrmOpxyxihTy=Txihy
6 5 3expb THrmOpxyxihTy=Txihy
7 hmop UHrmOpxyxihUy=Uxihy
8 7 3expb UHrmOpxyxihUy=Uxihy
9 6 8 oveqan12d THrmOpxyUHrmOpxyxihTy+xihUy=Txihy+Uxihy
10 9 anandirs THrmOpUHrmOpxyxihTy+xihUy=Txihy+Uxihy
11 1 2 anim12i THrmOpUHrmOpT:U:
12 hosval T:U:yT+opUy=Ty+Uy
13 12 oveq2d T:U:yxihT+opUy=xihTy+Uy
14 13 3expa T:U:yxihT+opUy=xihTy+Uy
15 14 adantrl T:U:xyxihT+opUy=xihTy+Uy
16 simprl T:U:xyx
17 ffvelcdm T:yTy
18 17 ad2ant2rl T:U:xyTy
19 ffvelcdm U:yUy
20 19 ad2ant2l T:U:xyUy
21 his7 xTyUyxihTy+Uy=xihTy+xihUy
22 16 18 20 21 syl3anc T:U:xyxihTy+Uy=xihTy+xihUy
23 15 22 eqtrd T:U:xyxihT+opUy=xihTy+xihUy
24 11 23 sylan THrmOpUHrmOpxyxihT+opUy=xihTy+xihUy
25 hosval T:U:xT+opUx=Tx+Ux
26 25 oveq1d T:U:xT+opUxihy=Tx+Uxihy
27 26 3expa T:U:xT+opUxihy=Tx+Uxihy
28 27 adantrr T:U:xyT+opUxihy=Tx+Uxihy
29 ffvelcdm T:xTx
30 29 ad2ant2r T:U:xyTx
31 ffvelcdm U:xUx
32 31 ad2ant2lr T:U:xyUx
33 simprr T:U:xyy
34 ax-his2 TxUxyTx+Uxihy=Txihy+Uxihy
35 30 32 33 34 syl3anc T:U:xyTx+Uxihy=Txihy+Uxihy
36 28 35 eqtrd T:U:xyT+opUxihy=Txihy+Uxihy
37 11 36 sylan THrmOpUHrmOpxyT+opUxihy=Txihy+Uxihy
38 10 24 37 3eqtr4d THrmOpUHrmOpxyxihT+opUy=T+opUxihy
39 38 ralrimivva THrmOpUHrmOpxyxihT+opUy=T+opUxihy
40 elhmop T+opUHrmOpT+opU:xyxihT+opUy=T+opUxihy
41 4 39 40 sylanbrc THrmOpUHrmOpT+opUHrmOp