| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsqrlem2.1 |
⊢ 𝑇 ∈ HrmOp |
| 2 |
|
opsqrlem2.2 |
⊢ 𝑆 = ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) ) ) |
| 3 |
|
opsqrlem2.3 |
⊢ 𝐹 = seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) |
| 4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 5 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 6 |
|
0hmop |
⊢ 0hop ∈ HrmOp |
| 7 |
6
|
elexi |
⊢ 0hop ∈ V |
| 8 |
7
|
fvconst2 |
⊢ ( 𝑧 ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ 𝑧 ) = 0hop ) |
| 9 |
8 6
|
eqeltrdi |
⊢ ( 𝑧 ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ 𝑧 ) ∈ HrmOp ) |
| 10 |
9
|
adantl |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ℕ ) → ( ( ℕ × { 0hop } ) ‘ 𝑧 ) ∈ HrmOp ) |
| 11 |
1 2 3
|
opsqrlem3 |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( 𝑧 𝑆 𝑤 ) = ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ) |
| 12 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 13 |
|
simpl |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → 𝑧 ∈ HrmOp ) |
| 14 |
|
eqidd |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( 𝑧 ∘ 𝑧 ) = ( 𝑧 ∘ 𝑧 ) ) |
| 15 |
|
hmopco |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑧 ∈ HrmOp ∧ ( 𝑧 ∘ 𝑧 ) = ( 𝑧 ∘ 𝑧 ) ) → ( 𝑧 ∘ 𝑧 ) ∈ HrmOp ) |
| 16 |
13 13 14 15
|
syl3anc |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( 𝑧 ∘ 𝑧 ) ∈ HrmOp ) |
| 17 |
|
hmopd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑧 ∘ 𝑧 ) ∈ HrmOp ) → ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ∈ HrmOp ) |
| 18 |
1 16 17
|
sylancr |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ∈ HrmOp ) |
| 19 |
|
hmopm |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ∈ HrmOp ) → ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ∈ HrmOp ) |
| 20 |
12 18 19
|
sylancr |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ∈ HrmOp ) |
| 21 |
|
hmops |
⊢ ( ( 𝑧 ∈ HrmOp ∧ ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ∈ HrmOp ) → ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ∈ HrmOp ) |
| 22 |
20 21
|
syldan |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ∈ HrmOp ) |
| 23 |
11 22
|
eqeltrd |
⊢ ( ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) → ( 𝑧 𝑆 𝑤 ) ∈ HrmOp ) |
| 24 |
23
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp ) ) → ( 𝑧 𝑆 𝑤 ) ∈ HrmOp ) |
| 25 |
4 5 10 24
|
seqf |
⊢ ( ⊤ → seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) : ℕ ⟶ HrmOp ) |
| 26 |
25
|
mptru |
⊢ seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) : ℕ ⟶ HrmOp |
| 27 |
3
|
feq1i |
⊢ ( 𝐹 : ℕ ⟶ HrmOp ↔ seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) : ℕ ⟶ HrmOp ) |
| 28 |
26 27
|
mpbir |
⊢ 𝐹 : ℕ ⟶ HrmOp |