Step |
Hyp |
Ref |
Expression |
1 |
|
opsqrlem2.1 |
⊢ 𝑇 ∈ HrmOp |
2 |
|
opsqrlem2.2 |
⊢ 𝑆 = ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) ) ) |
3 |
|
opsqrlem2.3 |
⊢ 𝐹 = seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) |
4 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
5 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) ) |
6 |
4 5
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) ) |
7 |
3
|
fveq1i |
⊢ ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ ( 𝑁 + 1 ) ) |
8 |
3
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑁 ) = ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 𝑁 ) |
9 |
8
|
oveq1i |
⊢ ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) |
10 |
6 7 9
|
3eqtr4g |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) ) |
11 |
1 2 3
|
opsqrlem4 |
⊢ 𝐹 : ℕ ⟶ HrmOp |
12 |
11
|
ffvelrni |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) ∈ HrmOp ) |
13 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
14 |
|
0hmop |
⊢ 0hop ∈ HrmOp |
15 |
14
|
elexi |
⊢ 0hop ∈ V |
16 |
15
|
fvconst2 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) = 0hop ) |
17 |
13 16
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) = 0hop ) |
18 |
17 14
|
eqeltrdi |
⊢ ( 𝑁 ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ∈ HrmOp ) |
19 |
1 2 3
|
opsqrlem3 |
⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ HrmOp ∧ ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ∈ HrmOp ) → ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑁 ) +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( ( 𝐹 ‘ 𝑁 ) ∘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) ) |
20 |
12 18 19
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ × { 0hop } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑁 ) +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( ( 𝐹 ‘ 𝑁 ) ∘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) ) |
21 |
10 20
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐹 ‘ 𝑁 ) +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( ( 𝐹 ‘ 𝑁 ) ∘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) ) |