| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsqrlem2.1 | ⊢ 𝑇  ∈  HrmOp | 
						
							| 2 |  | opsqrlem2.2 | ⊢ 𝑆  =  ( 𝑥  ∈  HrmOp ,  𝑦  ∈  HrmOp  ↦  ( 𝑥  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( 𝑥  ∘  𝑥 ) ) ) ) ) | 
						
							| 3 |  | opsqrlem2.3 | ⊢ 𝐹  =  seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) | 
						
							| 4 |  | elnnuz | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 5 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 6 | 4 5 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 7 | 3 | fveq1i | ⊢ ( 𝐹 ‘ ( 𝑁  +  1 ) )  =  ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ ( 𝑁  +  1 ) ) | 
						
							| 8 | 3 | fveq1i | ⊢ ( 𝐹 ‘ 𝑁 )  =  ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ 𝑁 ) | 
						
							| 9 | 8 | oveq1i | ⊢ ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 10 | 6 7 9 | 3eqtr4g | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑁  +  1 ) )  =  ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 11 | 1 2 3 | opsqrlem4 | ⊢ 𝐹 : ℕ ⟶ HrmOp | 
						
							| 12 | 11 | ffvelcdmi | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐹 ‘ 𝑁 )  ∈  HrmOp ) | 
						
							| 13 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 14 |  | 0hmop | ⊢  0hop   ∈  HrmOp | 
						
							| 15 | 14 | elexi | ⊢  0hop   ∈  V | 
						
							| 16 | 15 | fvconst2 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  →  ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) )  =   0hop  ) | 
						
							| 17 | 13 16 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) )  =   0hop  ) | 
						
							| 18 | 17 14 | eqeltrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) )  ∈  HrmOp ) | 
						
							| 19 | 1 2 3 | opsqrlem3 | ⊢ ( ( ( 𝐹 ‘ 𝑁 )  ∈  HrmOp  ∧  ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) )  ∈  HrmOp )  →  ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( 𝐹 ‘ 𝑁 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑁 )  ∘  ( 𝐹 ‘ 𝑁 ) ) ) ) ) ) | 
						
							| 20 | 12 18 19 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑁 ) 𝑆 ( ( ℕ  ×  {  0hop  } ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( 𝐹 ‘ 𝑁 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑁 )  ∘  ( 𝐹 ‘ 𝑁 ) ) ) ) ) ) | 
						
							| 21 | 10 20 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑁  +  1 ) )  =  ( ( 𝐹 ‘ 𝑁 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑁 )  ∘  ( 𝐹 ‘ 𝑁 ) ) ) ) ) ) |