Step |
Hyp |
Ref |
Expression |
1 |
|
opsqrlem2.1 |
⊢ 𝑇 ∈ HrmOp |
2 |
|
opsqrlem2.2 |
⊢ 𝑆 = ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) ) ) |
3 |
|
opsqrlem2.3 |
⊢ 𝐹 = seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) |
4 |
|
id |
⊢ ( 𝑧 = 𝐺 → 𝑧 = 𝐺 ) |
5 |
4 4
|
coeq12d |
⊢ ( 𝑧 = 𝐺 → ( 𝑧 ∘ 𝑧 ) = ( 𝐺 ∘ 𝐺 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑧 = 𝐺 → ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) = ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑧 = 𝐺 → ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) = ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) ) |
8 |
4 7
|
oveq12d |
⊢ ( 𝑧 = 𝐺 → ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) = ( 𝐺 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) ) ) |
9 |
|
eqidd |
⊢ ( 𝑤 = 𝐻 → ( 𝐺 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) ) = ( 𝐺 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) ) ) |
10 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
11 |
10 10
|
coeq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∘ 𝑥 ) = ( 𝑧 ∘ 𝑧 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) = ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) = ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) |
14 |
10 13
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) ) = ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ) |
15 |
|
eqidd |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) = ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ) |
16 |
14 15
|
cbvmpov |
⊢ ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) ) ) = ( 𝑧 ∈ HrmOp , 𝑤 ∈ HrmOp ↦ ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ) |
17 |
2 16
|
eqtri |
⊢ 𝑆 = ( 𝑧 ∈ HrmOp , 𝑤 ∈ HrmOp ↦ ( 𝑧 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑧 ∘ 𝑧 ) ) ) ) ) |
18 |
|
ovex |
⊢ ( 𝐺 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) ) ∈ V |
19 |
8 9 17 18
|
ovmpo |
⊢ ( ( 𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp ) → ( 𝐺 𝑆 𝐻 ) = ( 𝐺 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝐺 ∘ 𝐺 ) ) ) ) ) |