| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsqrlem2.1 | ⊢ 𝑇  ∈  HrmOp | 
						
							| 2 |  | opsqrlem2.2 | ⊢ 𝑆  =  ( 𝑥  ∈  HrmOp ,  𝑦  ∈  HrmOp  ↦  ( 𝑥  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( 𝑥  ∘  𝑥 ) ) ) ) ) | 
						
							| 3 |  | opsqrlem2.3 | ⊢ 𝐹  =  seq 1 ( 𝑆 ,  ( ℕ  ×  {  0hop  } ) ) | 
						
							| 4 |  | opsqrlem6.4 | ⊢ 𝑇  ≤op   Iop | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑗  =  1  →  ( ( 𝐹 ‘ 𝑗 )  ≤op   Iop   ↔  ( 𝐹 ‘ 1 )  ≤op   Iop  ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 8 | 7 | breq1d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝐹 ‘ 𝑗 )  ≤op   Iop   ↔  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ≤op   Iop  ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝐹 ‘ 𝑗 )  ≤op   Iop   ↔  ( 𝐹 ‘ 𝑁 )  ≤op   Iop  ) ) | 
						
							| 11 | 1 2 3 | opsqrlem2 | ⊢ ( 𝐹 ‘ 1 )  =   0hop | 
						
							| 12 |  | idleop | ⊢  0hop   ≤op   Iop | 
						
							| 13 | 11 12 | eqbrtri | ⊢ ( 𝐹 ‘ 1 )  ≤op   Iop | 
						
							| 14 |  | idhmop | ⊢  Iop   ∈  HrmOp | 
						
							| 15 | 1 2 3 | opsqrlem4 | ⊢ 𝐹 : ℕ ⟶ HrmOp | 
						
							| 16 | 15 | ffvelcdmi | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  ∈  HrmOp ) | 
						
							| 17 |  | hmopd | ⊢ ( (  Iop   ∈  HrmOp  ∧  ( 𝐹 ‘ 𝑘 )  ∈  HrmOp )  →  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp ) | 
						
							| 18 | 14 16 17 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp ) | 
						
							| 19 |  | eqid | ⊢ ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 20 |  | hmopco | ⊢ ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp  ∧  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp  ∧  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) )  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∈  HrmOp ) | 
						
							| 21 | 19 20 | mp3an3 | ⊢ ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp  ∧  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp )  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∈  HrmOp ) | 
						
							| 22 | 18 18 21 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∈  HrmOp ) | 
						
							| 23 |  | leopsq | ⊢ ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∈  HrmOp  →   0hop   ≤op  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 24 | 18 23 | syl | ⊢ ( 𝑘  ∈  ℕ  →   0hop   ≤op  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 25 |  | leop3 | ⊢ ( ( 𝑇  ∈  HrmOp  ∧   Iop   ∈  HrmOp )  →  ( 𝑇  ≤op   Iop   ↔   0hop   ≤op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 26 | 1 14 25 | mp2an | ⊢ ( 𝑇  ≤op   Iop   ↔   0hop   ≤op  (  Iop   −op  𝑇 ) ) | 
						
							| 27 | 4 26 | mpbi | ⊢  0hop   ≤op  (  Iop   −op  𝑇 ) | 
						
							| 28 |  | hmopd | ⊢ ( (  Iop   ∈  HrmOp  ∧  𝑇  ∈  HrmOp )  →  (  Iop   −op  𝑇 )  ∈  HrmOp ) | 
						
							| 29 | 14 1 28 | mp2an | ⊢ (  Iop   −op  𝑇 )  ∈  HrmOp | 
						
							| 30 |  | leopadd | ⊢ ( ( ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∈  HrmOp  ∧  (  Iop   −op  𝑇 )  ∈  HrmOp )  ∧  (  0hop   ≤op  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∧   0hop   ≤op  (  Iop   −op  𝑇 ) ) )  →   0hop   ≤op  ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 31 | 29 30 | mpanl2 | ⊢ ( ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∈  HrmOp  ∧  (  0hop   ≤op  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∧   0hop   ≤op  (  Iop   −op  𝑇 ) ) )  →   0hop   ≤op  ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 32 | 27 31 | mpanr2 | ⊢ ( ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  ∈  HrmOp  ∧   0hop   ≤op  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) )  →   0hop   ≤op  ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 33 | 22 24 32 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →   0hop   ≤op  ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 34 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 35 |  | hmopf | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  HrmOp  →  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ ) | 
						
							| 36 | 16 35 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ ) | 
						
							| 37 |  | homulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  →  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) | 
						
							| 38 | 34 36 37 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) | 
						
							| 39 |  | hmopf | ⊢ ( 𝑇  ∈  HrmOp  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 40 | 1 39 | ax-mp | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 41 |  | fco | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  →  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) | 
						
							| 42 | 36 36 41 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) | 
						
							| 43 |  | hosubcl | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 44 | 40 42 43 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 45 |  | hmopf | ⊢ (  Iop   ∈  HrmOp  →   Iop  :  ℋ ⟶  ℋ ) | 
						
							| 46 | 14 45 | ax-mp | ⊢  Iop  :  ℋ ⟶  ℋ | 
						
							| 47 |  | homulcl | ⊢ ( ( 2  ∈  ℂ  ∧   Iop  :  ℋ ⟶  ℋ )  →  ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ ) | 
						
							| 48 | 34 46 47 | mp2an | ⊢ ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ | 
						
							| 49 |  | hosubsub4 | ⊢ ( ( ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 50 | 48 49 | mp3an1 | ⊢ ( ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 51 | 38 44 50 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 52 |  | hosubcl | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 53 | 42 38 52 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 54 |  | hoadd32 | ⊢ ( (  Iop  :  ℋ ⟶  ℋ  ∧  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ  ∧   Iop  :  ℋ ⟶  ℋ )  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  =  ( (  Iop   +op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 55 | 46 46 54 | mp3an13 | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  =  ( (  Iop   +op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 56 | 53 55 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  =  ( (  Iop   +op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 57 |  | ho2times | ⊢ (  Iop  :  ℋ ⟶  ℋ  →  ( 2  ·op   Iop  )  =  (  Iop   +op   Iop  ) ) | 
						
							| 58 | 46 57 | ax-mp | ⊢ ( 2  ·op   Iop  )  =  (  Iop   +op   Iop  ) | 
						
							| 59 | 58 | oveq1i | ⊢ ( ( 2  ·op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( (  Iop   +op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 60 | 56 59 | eqtr4di | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  =  ( ( 2  ·op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 61 |  | hoaddsubass | ⊢ ( ( ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( 2  ·op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 62 | 48 61 | mp3an1 | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( 2  ·op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 63 | 42 38 62 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( 2  ·op   Iop  )  +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 64 | 60 63 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 65 | 64 | oveq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  −op  𝑇 )  =  ( ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  𝑇 ) ) | 
						
							| 66 |  | hoaddcl | ⊢ ( (  Iop  :  ℋ ⟶  ℋ  ∧  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ )  →  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 67 | 46 53 66 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 68 |  | hoaddsubass | ⊢ ( ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ  ∧   Iop  :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  −op  𝑇 )  =  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 69 | 46 40 68 | mp3an23 | ⊢ ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ  →  ( ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  −op  𝑇 )  =  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 70 | 67 69 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op   Iop  )  −op  𝑇 )  =  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 71 |  | hoaddcl | ⊢ ( ( ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 72 | 48 42 71 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 73 |  | hosubsub4 | ⊢ ( ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  𝑇 )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 74 | 40 73 | mp3an3 | ⊢ ( ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  𝑇 )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 75 | 72 38 74 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  𝑇 )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 76 | 65 70 75 | 3eqtr3d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 77 |  | hosubadd4 | ⊢ ( ( ( ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  ∧  ( 𝑇 :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) )  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 78 | 40 77 | mpanr1 | ⊢ ( ( ( ( 2  ·op   Iop  ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 79 | 48 78 | mpanl1 | ⊢ ( ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 80 | 38 42 79 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( ( ( 2  ·op   Iop  )  +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  𝑇 ) ) ) | 
						
							| 81 | 76 80 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) )  =  ( ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 82 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 83 |  | homulcl | ⊢ ( ( ( 1  /  2 )  ∈  ℂ  ∧  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ )  →  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 84 | 82 44 83 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 85 |  | hoadddi | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ )  →  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) )  =  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 86 | 34 85 | mp3an1 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ )  →  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) )  =  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 87 | 36 84 86 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) )  =  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 88 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 89 | 34 88 | recidi | ⊢ ( 2  ·  ( 1  /  2 ) )  =  1 | 
						
							| 90 | 89 | oveq1i | ⊢ ( ( 2  ·  ( 1  /  2 ) )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( 1  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 91 |  | homulass | ⊢ ( ( 2  ∈  ℂ  ∧  ( 1  /  2 )  ∈  ℂ  ∧  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ )  →  ( ( 2  ·  ( 1  /  2 ) )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 92 | 34 82 91 | mp3an12 | ⊢ ( ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ  →  ( ( 2  ·  ( 1  /  2 ) )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 93 | 44 92 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  ( 1  /  2 ) )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 94 |  | homullid | ⊢ ( ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) :  ℋ ⟶  ℋ  →  ( 1  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 95 | 44 94 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 96 | 90 93 95 | 3eqtr3a | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) )  =  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 2  ·op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) )  =  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 98 | 87 97 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) )  =  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 99 | 98 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  +op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 100 | 51 81 99 | 3eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) )  =  ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 101 |  | hoaddcl | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) :  ℋ ⟶  ℋ )  →  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 102 | 36 84 101 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) :  ℋ ⟶  ℋ ) | 
						
							| 103 |  | hosubdi | ⊢ ( ( 2  ∈  ℂ  ∧   Iop  :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) :  ℋ ⟶  ℋ )  →  ( 2  ·op  (  Iop   −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 104 | 34 46 103 | mp3an12 | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) :  ℋ ⟶  ℋ  →  ( 2  ·op  (  Iop   −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 105 | 102 104 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  (  Iop   −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) )  =  ( ( 2  ·op   Iop  )  −op  ( 2  ·op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 106 | 100 105 | eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) )  =  ( 2  ·op  (  Iop   −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 107 |  | hosubcl | ⊢ ( (  Iop  :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  →  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) | 
						
							| 108 | 46 36 107 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) | 
						
							| 109 |  | hocsubdir | ⊢ ( (  Iop  :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 110 | 46 109 | mp3an1 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 111 | 36 108 110 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 112 |  | hmoplin | ⊢ (  Iop   ∈  HrmOp  →   Iop   ∈  LinOp ) | 
						
							| 113 | 14 112 | ax-mp | ⊢  Iop   ∈  LinOp | 
						
							| 114 |  | hoddi | ⊢ ( (  Iop   ∈  LinOp  ∧   Iop  :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  →  (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   ∘   Iop  )  −op  (  Iop   ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 115 | 113 46 114 | mp3an12 | ⊢ ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  →  (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   ∘   Iop  )  −op  (  Iop   ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 116 | 36 115 | syl | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   ∘   Iop  )  −op  (  Iop   ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 117 | 46 | hoid1i | ⊢ (  Iop   ∘   Iop  )  =   Iop | 
						
							| 118 | 117 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   ∘   Iop  )  =   Iop  ) | 
						
							| 119 |  | hoico2 | ⊢ ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  →  (  Iop   ∘  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 120 | 36 119 | syl | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   ∘  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 121 | 118 120 | oveq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   ∘   Iop  )  −op  (  Iop   ∘  ( 𝐹 ‘ 𝑘 ) ) )  =  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 122 | 116 121 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 123 |  | hmoplin | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  HrmOp  →  ( 𝐹 ‘ 𝑘 )  ∈  LinOp ) | 
						
							| 124 | 16 123 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  ∈  LinOp ) | 
						
							| 125 |  | hoddi | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  LinOp  ∧   Iop  :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  →  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ( 𝐹 ‘ 𝑘 )  ∘   Iop  )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 126 | 46 125 | mp3an2 | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  LinOp  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  →  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ( 𝐹 ‘ 𝑘 )  ∘   Iop  )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 127 | 124 36 126 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( ( 𝐹 ‘ 𝑘 )  ∘   Iop  )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 128 |  | hoico1 | ⊢ ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  →  ( ( 𝐹 ‘ 𝑘 )  ∘   Iop  )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 129 | 36 128 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑘 )  ∘   Iop  )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 𝐹 ‘ 𝑘 )  ∘   Iop  )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( 𝐹 ‘ 𝑘 )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 131 | 127 130 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ( 𝐹 ‘ 𝑘 )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 132 | 122 131 | oveq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  −op  ( ( 𝐹 ‘ 𝑘 )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 133 | 36 46 | jctil | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop  :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ ) ) | 
						
							| 134 |  | hosubadd4 | ⊢ ( ( (  Iop  :  ℋ ⟶  ℋ  ∧  ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ )  ∧  ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ ) )  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  −op  ( ( 𝐹 ‘ 𝑘 )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 135 | 133 36 42 134 | syl12anc | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  −op  ( ( 𝐹 ‘ 𝑘 )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 136 | 132 135 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) )  =  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 137 |  | ho2times | ⊢ ( ( 𝐹 ‘ 𝑘 ) :  ℋ ⟶  ℋ  →  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 )  +op  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 138 | 36 137 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 )  +op  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 139 | 138 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 140 |  | hoaddsubass | ⊢ ( (  Iop  :  ℋ ⟶  ℋ  ∧  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 141 | 46 140 | mp3an1 | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ  ∧  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) :  ℋ ⟶  ℋ )  →  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 142 | 42 38 141 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   +op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) )  =  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 143 | 136 139 142 | 3eqtr2d | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) ) )  =  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 144 | 111 143 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  =  (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 145 | 144 | oveq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  +op  (  Iop   −op  𝑇 ) )  =  ( (  Iop   +op  ( ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) )  −op  ( 2  ·op  ( 𝐹 ‘ 𝑘 ) ) ) )  +op  (  Iop   −op  𝑇 ) ) ) | 
						
							| 146 | 1 2 3 | opsqrlem5 | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  =  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 147 | 146 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  =  (  Iop   −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 148 | 147 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) )  =  ( 2  ·op  (  Iop   −op  ( ( 𝐹 ‘ 𝑘 )  +op  ( ( 1  /  2 )  ·op  ( 𝑇  −op  ( ( 𝐹 ‘ 𝑘 )  ∘  ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 149 | 106 145 148 | 3eqtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( (  Iop   −op  ( 𝐹 ‘ 𝑘 ) )  ∘  (  Iop   −op  ( 𝐹 ‘ 𝑘 ) ) )  +op  (  Iop   −op  𝑇 ) )  =  ( 2  ·op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 150 | 33 149 | breqtrd | ⊢ ( 𝑘  ∈  ℕ  →   0hop   ≤op  ( 2  ·op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 151 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 152 | 15 | ffvelcdmi | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  HrmOp ) | 
						
							| 153 | 151 152 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  HrmOp ) | 
						
							| 154 |  | hmopd | ⊢ ( (  Iop   ∈  HrmOp  ∧  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  HrmOp )  →  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  HrmOp ) | 
						
							| 155 | 14 153 154 | sylancr | ⊢ ( 𝑘  ∈  ℕ  →  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  HrmOp ) | 
						
							| 156 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 157 |  | 2pos | ⊢ 0  <  2 | 
						
							| 158 |  | leopmul | ⊢ ( ( 2  ∈  ℝ  ∧  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  HrmOp  ∧  0  <  2 )  →  (  0hop   ≤op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ↔   0hop   ≤op  ( 2  ·op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 159 | 156 157 158 | mp3an13 | ⊢ ( (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ∈  HrmOp  →  (  0hop   ≤op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ↔   0hop   ≤op  ( 2  ·op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 160 | 155 159 | syl | ⊢ ( 𝑘  ∈  ℕ  →  (  0hop   ≤op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) )  ↔   0hop   ≤op  ( 2  ·op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 161 | 150 160 | mpbird | ⊢ ( 𝑘  ∈  ℕ  →   0hop   ≤op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 162 |  | leop3 | ⊢ ( ( ( 𝐹 ‘ ( 𝑘  +  1 ) )  ∈  HrmOp  ∧   Iop   ∈  HrmOp )  →  ( ( 𝐹 ‘ ( 𝑘  +  1 ) )  ≤op   Iop   ↔   0hop   ≤op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 163 | 153 14 162 | sylancl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐹 ‘ ( 𝑘  +  1 ) )  ≤op   Iop   ↔   0hop   ≤op  (  Iop   −op  ( 𝐹 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 164 | 161 163 | mpbird | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑘  +  1 ) )  ≤op   Iop  ) | 
						
							| 165 | 6 8 10 13 164 | nn1suc | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐹 ‘ 𝑁 )  ≤op   Iop  ) |