| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( 2  ·op  𝑇 )  =  ( ( 1  +  1 )  ·op  𝑇 ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | hoadddir | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( ( 1  +  1 )  ·op  𝑇 )  =  ( ( 1  ·op  𝑇 )  +op  ( 1  ·op  𝑇 ) ) ) | 
						
							| 5 | 3 3 4 | mp3an12 | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( ( 1  +  1 )  ·op  𝑇 )  =  ( ( 1  ·op  𝑇 )  +op  ( 1  ·op  𝑇 ) ) ) | 
						
							| 6 | 2 5 | eqtrid | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 2  ·op  𝑇 )  =  ( ( 1  ·op  𝑇 )  +op  ( 1  ·op  𝑇 ) ) ) | 
						
							| 7 |  | hoadddi | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 1  ·op  ( 𝑇  +op  𝑇 ) )  =  ( ( 1  ·op  𝑇 )  +op  ( 1  ·op  𝑇 ) ) ) | 
						
							| 8 | 3 7 | mp3an1 | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 1  ·op  ( 𝑇  +op  𝑇 ) )  =  ( ( 1  ·op  𝑇 )  +op  ( 1  ·op  𝑇 ) ) ) | 
						
							| 9 | 8 | anidms | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 1  ·op  ( 𝑇  +op  𝑇 ) )  =  ( ( 1  ·op  𝑇 )  +op  ( 1  ·op  𝑇 ) ) ) | 
						
							| 10 |  | hoaddcl | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( 𝑇  +op  𝑇 ) :  ℋ ⟶  ℋ ) | 
						
							| 11 | 10 | anidms | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝑇  +op  𝑇 ) :  ℋ ⟶  ℋ ) | 
						
							| 12 |  | homullid | ⊢ ( ( 𝑇  +op  𝑇 ) :  ℋ ⟶  ℋ  →  ( 1  ·op  ( 𝑇  +op  𝑇 ) )  =  ( 𝑇  +op  𝑇 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 1  ·op  ( 𝑇  +op  𝑇 ) )  =  ( 𝑇  +op  𝑇 ) ) | 
						
							| 14 | 6 9 13 | 3eqtr2d | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 2  ·op  𝑇 )  =  ( 𝑇  +op  𝑇 ) ) |