Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
2 |
1
|
oveq1i |
⊢ ( 2 ·op 𝑇 ) = ( ( 1 + 1 ) ·op 𝑇 ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
hoadddir |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 1 + 1 ) ·op 𝑇 ) = ( ( 1 ·op 𝑇 ) +op ( 1 ·op 𝑇 ) ) ) |
5 |
3 3 4
|
mp3an12 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( 1 + 1 ) ·op 𝑇 ) = ( ( 1 ·op 𝑇 ) +op ( 1 ·op 𝑇 ) ) ) |
6 |
2 5
|
eqtrid |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 2 ·op 𝑇 ) = ( ( 1 ·op 𝑇 ) +op ( 1 ·op 𝑇 ) ) ) |
7 |
|
hoadddi |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 1 ·op ( 𝑇 +op 𝑇 ) ) = ( ( 1 ·op 𝑇 ) +op ( 1 ·op 𝑇 ) ) ) |
8 |
3 7
|
mp3an1 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 1 ·op ( 𝑇 +op 𝑇 ) ) = ( ( 1 ·op 𝑇 ) +op ( 1 ·op 𝑇 ) ) ) |
9 |
8
|
anidms |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op ( 𝑇 +op 𝑇 ) ) = ( ( 1 ·op 𝑇 ) +op ( 1 ·op 𝑇 ) ) ) |
10 |
|
hoaddcl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑇 +op 𝑇 ) : ℋ ⟶ ℋ ) |
11 |
10
|
anidms |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 +op 𝑇 ) : ℋ ⟶ ℋ ) |
12 |
|
homulid2 |
⊢ ( ( 𝑇 +op 𝑇 ) : ℋ ⟶ ℋ → ( 1 ·op ( 𝑇 +op 𝑇 ) ) = ( 𝑇 +op 𝑇 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op ( 𝑇 +op 𝑇 ) ) = ( 𝑇 +op 𝑇 ) ) |
14 |
6 9 13
|
3eqtr2d |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 2 ·op 𝑇 ) = ( 𝑇 +op 𝑇 ) ) |