Metamath Proof Explorer


Theorem opsqrlem2

Description: Lemma for opsqri . FN is the recursive function A_n (starting at n=1 instead of 0) of Theorem 9.4-2 of Kreyszig p. 476. (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇op ( 𝑥𝑥 ) ) ) ) )
opsqrlem2.3 𝐹 = seq 1 ( 𝑆 , ( ℕ × { 0hop } ) )
Assertion opsqrlem2 ( 𝐹 ‘ 1 ) = 0hop

Proof

Step Hyp Ref Expression
1 opsqrlem2.1 𝑇 ∈ HrmOp
2 opsqrlem2.2 𝑆 = ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇op ( 𝑥𝑥 ) ) ) ) )
3 opsqrlem2.3 𝐹 = seq 1 ( 𝑆 , ( ℕ × { 0hop } ) )
4 3 fveq1i ( 𝐹 ‘ 1 ) = ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 1 )
5 1z 1 ∈ ℤ
6 seq1 ( 1 ∈ ℤ → ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 1 ) = ( ( ℕ × { 0hop } ) ‘ 1 ) )
7 5 6 ax-mp ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 1 ) = ( ( ℕ × { 0hop } ) ‘ 1 )
8 1nn 1 ∈ ℕ
9 0hmop 0hop ∈ HrmOp
10 9 elexi 0hop ∈ V
11 10 fvconst2 ( 1 ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ 1 ) = 0hop )
12 8 11 ax-mp ( ( ℕ × { 0hop } ) ‘ 1 ) = 0hop
13 4 7 12 3eqtri ( 𝐹 ‘ 1 ) = 0hop