| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsqrlem2.1 |
⊢ 𝑇 ∈ HrmOp |
| 2 |
|
opsqrlem2.2 |
⊢ 𝑆 = ( 𝑥 ∈ HrmOp , 𝑦 ∈ HrmOp ↦ ( 𝑥 +op ( ( 1 / 2 ) ·op ( 𝑇 −op ( 𝑥 ∘ 𝑥 ) ) ) ) ) |
| 3 |
|
opsqrlem2.3 |
⊢ 𝐹 = seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) |
| 4 |
3
|
fveq1i |
⊢ ( 𝐹 ‘ 1 ) = ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 1 ) |
| 5 |
|
1z |
⊢ 1 ∈ ℤ |
| 6 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 1 ) = ( ( ℕ × { 0hop } ) ‘ 1 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( seq 1 ( 𝑆 , ( ℕ × { 0hop } ) ) ‘ 1 ) = ( ( ℕ × { 0hop } ) ‘ 1 ) |
| 8 |
|
1nn |
⊢ 1 ∈ ℕ |
| 9 |
|
0hmop |
⊢ 0hop ∈ HrmOp |
| 10 |
9
|
elexi |
⊢ 0hop ∈ V |
| 11 |
10
|
fvconst2 |
⊢ ( 1 ∈ ℕ → ( ( ℕ × { 0hop } ) ‘ 1 ) = 0hop ) |
| 12 |
8 11
|
ax-mp |
⊢ ( ( ℕ × { 0hop } ) ‘ 1 ) = 0hop |
| 13 |
4 7 12
|
3eqtri |
⊢ ( 𝐹 ‘ 1 ) = 0hop |