Metamath Proof Explorer


Theorem leop3

Description: Operator ordering in terms of a positive operator. Definition of operator ordering in Retherford p. 49. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop3 ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ 0hopop ( 𝑈op 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 leop ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
2 0hmop 0hop ∈ HrmOp
3 hmopd ( ( 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑈op 𝑇 ) ∈ HrmOp )
4 3 ancoms ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑈op 𝑇 ) ∈ HrmOp )
5 leop2 ( ( 0hop ∈ HrmOp ∧ ( 𝑈op 𝑇 ) ∈ HrmOp ) → ( 0hopop ( 𝑈op 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 0hop𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
6 2 4 5 sylancr ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 0hopop ( 𝑈op 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 0hop𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
7 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
8 7 oveq1d ( 𝑥 ∈ ℋ → ( ( 0hop𝑥 ) ·ih 𝑥 ) = ( 0 ·ih 𝑥 ) )
9 hi01 ( 𝑥 ∈ ℋ → ( 0 ·ih 𝑥 ) = 0 )
10 8 9 eqtrd ( 𝑥 ∈ ℋ → ( ( 0hop𝑥 ) ·ih 𝑥 ) = 0 )
11 10 breq1d ( 𝑥 ∈ ℋ → ( ( ( 0hop𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
12 11 ralbiia ( ∀ 𝑥 ∈ ℋ ( ( 0hop𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
13 6 12 bitr2di ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0hopop ( 𝑈op 𝑇 ) ) )
14 1 13 bitrd ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇op 𝑈 ↔ 0hopop ( 𝑈op 𝑇 ) ) )