Step |
Hyp |
Ref |
Expression |
1 |
|
leop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
2 |
|
0hmop |
⊢ 0hop ∈ HrmOp |
3 |
|
hmopd |
⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑈 −op 𝑇 ) ∈ HrmOp ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑈 −op 𝑇 ) ∈ HrmOp ) |
5 |
|
leop2 |
⊢ ( ( 0hop ∈ HrmOp ∧ ( 𝑈 −op 𝑇 ) ∈ HrmOp ) → ( 0hop ≤op ( 𝑈 −op 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
6 |
2 4 5
|
sylancr |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 0hop ≤op ( 𝑈 −op 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
7 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
8 |
7
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) = ( 0ℎ ·ih 𝑥 ) ) |
9 |
|
hi01 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ ·ih 𝑥 ) = 0 ) |
10 |
8 9
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) |
11 |
10
|
breq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
12 |
11
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 0hop ‘ 𝑥 ) ·ih 𝑥 ) ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
13 |
6 12
|
bitr2di |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑈 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ↔ 0hop ≤op ( 𝑈 −op 𝑇 ) ) ) |
14 |
1 13
|
bitrd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 ≤op 𝑈 ↔ 0hop ≤op ( 𝑈 −op 𝑇 ) ) ) |