Step |
Hyp |
Ref |
Expression |
1 |
|
opsqrlem2.1 |
|- T e. HrmOp |
2 |
|
opsqrlem2.2 |
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) |
3 |
|
opsqrlem2.3 |
|- F = seq 1 ( S , ( NN X. { 0hop } ) ) |
4 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
5 |
|
seqp1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) |
6 |
4 5
|
sylbi |
|- ( N e. NN -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) |
7 |
3
|
fveq1i |
|- ( F ` ( N + 1 ) ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) |
8 |
3
|
fveq1i |
|- ( F ` N ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) |
9 |
8
|
oveq1i |
|- ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) |
10 |
6 7 9
|
3eqtr4g |
|- ( N e. NN -> ( F ` ( N + 1 ) ) = ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) |
11 |
1 2 3
|
opsqrlem4 |
|- F : NN --> HrmOp |
12 |
11
|
ffvelrni |
|- ( N e. NN -> ( F ` N ) e. HrmOp ) |
13 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
14 |
|
0hmop |
|- 0hop e. HrmOp |
15 |
14
|
elexi |
|- 0hop e. _V |
16 |
15
|
fvconst2 |
|- ( ( N + 1 ) e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) = 0hop ) |
17 |
13 16
|
syl |
|- ( N e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) = 0hop ) |
18 |
17 14
|
eqeltrdi |
|- ( N e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) e. HrmOp ) |
19 |
1 2 3
|
opsqrlem3 |
|- ( ( ( F ` N ) e. HrmOp /\ ( ( NN X. { 0hop } ) ` ( N + 1 ) ) e. HrmOp ) -> ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |
20 |
12 18 19
|
syl2anc |
|- ( N e. NN -> ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |
21 |
10 20
|
eqtrd |
|- ( N e. NN -> ( F ` ( N + 1 ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |