| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsqrlem2.1 |  |-  T e. HrmOp | 
						
							| 2 |  | opsqrlem2.2 |  |-  S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) | 
						
							| 3 |  | opsqrlem2.3 |  |-  F = seq 1 ( S , ( NN X. { 0hop } ) ) | 
						
							| 4 |  | elnnuz |  |-  ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) | 
						
							| 5 |  | seqp1 |  |-  ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) | 
						
							| 6 | 4 5 | sylbi |  |-  ( N e. NN -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) | 
						
							| 7 | 3 | fveq1i |  |-  ( F ` ( N + 1 ) ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) | 
						
							| 8 | 3 | fveq1i |  |-  ( F ` N ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) | 
						
							| 9 | 8 | oveq1i |  |-  ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) | 
						
							| 10 | 6 7 9 | 3eqtr4g |  |-  ( N e. NN -> ( F ` ( N + 1 ) ) = ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) | 
						
							| 11 | 1 2 3 | opsqrlem4 |  |-  F : NN --> HrmOp | 
						
							| 12 | 11 | ffvelcdmi |  |-  ( N e. NN -> ( F ` N ) e. HrmOp ) | 
						
							| 13 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 14 |  | 0hmop |  |-  0hop e. HrmOp | 
						
							| 15 | 14 | elexi |  |-  0hop e. _V | 
						
							| 16 | 15 | fvconst2 |  |-  ( ( N + 1 ) e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) = 0hop ) | 
						
							| 17 | 13 16 | syl |  |-  ( N e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) = 0hop ) | 
						
							| 18 | 17 14 | eqeltrdi |  |-  ( N e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) e. HrmOp ) | 
						
							| 19 | 1 2 3 | opsqrlem3 |  |-  ( ( ( F ` N ) e. HrmOp /\ ( ( NN X. { 0hop } ) ` ( N + 1 ) ) e. HrmOp ) -> ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) | 
						
							| 20 | 12 18 19 | syl2anc |  |-  ( N e. NN -> ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) | 
						
							| 21 | 10 20 | eqtrd |  |-  ( N e. NN -> ( F ` ( N + 1 ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |