| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsqrlem2.1 |
|- T e. HrmOp |
| 2 |
|
opsqrlem2.2 |
|- S = ( x e. HrmOp , y e. HrmOp |-> ( x +op ( ( 1 / 2 ) .op ( T -op ( x o. x ) ) ) ) ) |
| 3 |
|
opsqrlem2.3 |
|- F = seq 1 ( S , ( NN X. { 0hop } ) ) |
| 4 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
| 5 |
|
seqp1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) |
| 6 |
4 5
|
sylbi |
|- ( N e. NN -> ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) |
| 7 |
3
|
fveq1i |
|- ( F ` ( N + 1 ) ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` ( N + 1 ) ) |
| 8 |
3
|
fveq1i |
|- ( F ` N ) = ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) |
| 9 |
8
|
oveq1i |
|- ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( S , ( NN X. { 0hop } ) ) ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) |
| 10 |
6 7 9
|
3eqtr4g |
|- ( N e. NN -> ( F ` ( N + 1 ) ) = ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) ) |
| 11 |
1 2 3
|
opsqrlem4 |
|- F : NN --> HrmOp |
| 12 |
11
|
ffvelcdmi |
|- ( N e. NN -> ( F ` N ) e. HrmOp ) |
| 13 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 14 |
|
0hmop |
|- 0hop e. HrmOp |
| 15 |
14
|
elexi |
|- 0hop e. _V |
| 16 |
15
|
fvconst2 |
|- ( ( N + 1 ) e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) = 0hop ) |
| 17 |
13 16
|
syl |
|- ( N e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) = 0hop ) |
| 18 |
17 14
|
eqeltrdi |
|- ( N e. NN -> ( ( NN X. { 0hop } ) ` ( N + 1 ) ) e. HrmOp ) |
| 19 |
1 2 3
|
opsqrlem3 |
|- ( ( ( F ` N ) e. HrmOp /\ ( ( NN X. { 0hop } ) ` ( N + 1 ) ) e. HrmOp ) -> ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |
| 20 |
12 18 19
|
syl2anc |
|- ( N e. NN -> ( ( F ` N ) S ( ( NN X. { 0hop } ) ` ( N + 1 ) ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |
| 21 |
10 20
|
eqtrd |
|- ( N e. NN -> ( F ` ( N + 1 ) ) = ( ( F ` N ) +op ( ( 1 / 2 ) .op ( T -op ( ( F ` N ) o. ( F ` N ) ) ) ) ) ) |