| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrso.o |
|- O = ( ( I ordPwSer R ) ` T ) |
| 2 |
|
opsrso.i |
|- ( ph -> I e. V ) |
| 3 |
|
opsrso.r |
|- ( ph -> R e. Toset ) |
| 4 |
|
opsrso.t |
|- ( ph -> T C_ ( I X. I ) ) |
| 5 |
|
opsrso.w |
|- ( ph -> T We I ) |
| 6 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 7 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 8 |
|
eqid |
|- ( lt ` R ) = ( lt ` R ) |
| 9 |
|
eqid |
|- ( T |
| 10 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 11 |
|
biid |
|- ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T ( x ` w ) = ( y ` w ) ) ) <-> E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T ( x ` w ) = ( y ` w ) ) ) ) |
| 12 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
opsrtoslem2 |
|- ( ph -> O e. Toset ) |