Step |
Hyp |
Ref |
Expression |
1 |
|
opsrso.o |
⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) |
2 |
|
opsrso.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
opsrso.r |
⊢ ( 𝜑 → 𝑅 ∈ Toset ) |
4 |
|
opsrso.t |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) |
5 |
|
opsrso.w |
⊢ ( 𝜑 → 𝑇 We 𝐼 ) |
6 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
8 |
|
eqid |
⊢ ( lt ‘ 𝑅 ) = ( lt ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 𝑇 <bag 𝐼 ) = ( 𝑇 <bag 𝐼 ) |
10 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
11 |
|
biid |
⊢ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
12 |
|
eqid |
⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
opsrtoslem2 |
⊢ ( 𝜑 → 𝑂 ∈ Toset ) |